PARAMETER CHOICE BY DISCREPANCY PRINCIPLES FOR ILL-POSED PROBLEMS LEADING TO OPTIMAL CONVERGENCE-RATES

被引:7
作者
GEORGE, S
NAIR, MT
机构
[1] Department of Mathematics, Goa University, Goa
关键词
ILL-POSED OPERATOR EQUATIONS; TIKHONOV REGULARIZATION; MINIMAL-NORM LEAST-SQUARES SOLUTION; PARAMETER CHOICE STRATEGY; DISCREPANCY PRINCIPLE; MOROZOV METHOD; ARCANGELI METHOD; OPTIMAL RATE;
D O I
10.1007/BF02191771
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Schock (Ref. 1) considered a general a posteriori parameter choice strategy for the Tikhonov regularization of the ill-posed operator equation Tx = y which provides nearly the optimal rate of convergence if the minimal-norm least-squares solution x belongs to the range of the operator (T*T)(v), 0 < nu less-than-or-equal-to 1. Recently, Nair (Ref. 2) improved the result of Schock and also provided the optimal rate if nu = 1. In this note, we further improve the result and show in particular that the optimal rate can be achieved for 1/2 less-than-or-equal-to nu less-than-or-equal-to 1.
引用
收藏
页码:217 / 222
页数:6
相关论文
共 14 条
[1]  
ARCANGELI R, 1966, CR ACAD SCI A MATH, V263, P282
[2]  
Engl H.W., 1985, CONSTRUCTIVE METHODS, P120
[3]  
Engl H.W., 1987, INVERSE ILL POSED PR, P97
[5]  
Groetsch C. W., 1984, THEORY TIKHONOV REGU
[6]   ASYMPTOTIC CONVERGENCE RATE OF ARCANGELI METHOD FOR ILL-POSED PROBLEMS [J].
GROETSCH, CW ;
SCHOCK, E .
APPLICABLE ANALYSIS, 1984, 18 (03) :175-182
[7]  
Groetsch CW., 1983, IMPROPERLY POSED PRO, P97, DOI [10.1007/978-3-0348-5460-3_7, DOI 10.1007/978-3-0348-5460-3_7]
[8]   AN OPTIMAL PARAMETER CHOICE FOR REGULARIZED ILL-POSED PROBLEMS [J].
GUACANEME, JE .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1988, 11 (04) :610-613
[9]  
MOROZOV VA, 1966, USSR COMP MATH MATH, V8, P63
[10]   A GENERALIZATION OF ARCANGELIS METHOD FOR ILL-POSED PROBLEMS LEADING TO OPTIMAL RATES [J].
NAIR, MT .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1992, 15 (06) :1042-1046