STABLE EMBEDDING OF ILL-POSED LINEAR EQUALITY AND INEQUALITY SYSTEMS INTO FUZZIFIED SYSTEMS

被引:12
作者
KOVACS, M
机构
[1] Computer Center, Eötvös Loránd University, Budapest 112, H-1502
基金
新加坡国家研究基金会;
关键词
FUZZY NUMBERS; EXTENSION PRINCIPLE; LINEAR SYSTEMS; STABILITY; REGULARIZATION;
D O I
10.1016/0165-0114(92)90148-W
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper the (g, p, d)-fuzzification of linear systems is introduced. It is shown that this type of fuzzification possesses the feature of regularization, i.e. the maximal height solution of the fuzzified problem is stable for a wide class of problems.
引用
收藏
页码:305 / 312
页数:8
相关论文
共 9 条
[1]   ON STABILITY IN FUZZY LINEAR-PROGRAMMING PROBLEMS [J].
FULLER, R .
FUZZY SETS AND SYSTEMS, 1989, 30 (03) :339-344
[2]   ON STABILITY IN POSSIBILISTIC LINEAR EQUALITY SYSTEMS WITH LIPSCHITZIAN FUZZY NUMBERS [J].
FULLER, R .
FUZZY SETS AND SYSTEMS, 1990, 34 (03) :347-353
[3]  
KOVACS M, 1988, NUMERICAL METHODS
[4]  
KOVACS M, 1988, BUSEFAL, V37, P69
[5]  
KOVACS M, 1989, VESTNIK MOSKOV U SER, V15, P5
[6]  
Morozov V. A., 1984, METHODS SOLVING INCO
[7]   FUZZY LINEAR-PROGRAMMING PROBLEMS WITH FUZZY NUMBERS [J].
TANAKA, H ;
ASAI, K .
FUZZY SETS AND SYSTEMS, 1984, 13 (01) :1-10
[8]  
Tikhonov A.N., 1977, SIAM REV, V21, P266, DOI DOI 10.1137/1021044
[9]  
VASILEV FP, 1989, NUMERICAL METHODS SO