HIGHER-ORDER LINDLEY EQUATIONS

被引:17
作者
KARPELEVICH, FI
KELBERT, MY
SUHOV, YM
机构
[1] RUSSIAN MINIST TRANSPORT COMMUN,MOSCOW INST TRANSPORT ENGINEERS,MOSCOW 107174,RUSSIA
[2] RUSSIAN ACAD SCI,INT INST EARTHQUAKE PREDICT THEORY & MATH GEOPHYS,MOSCOW 113556,RUSSIA
[3] UNIV COLL SWANSEA,SCH EUROPEAN BUSINESS MANAGEMENT,SWANSEA SA2 8PP,W GLAM,WALES
[4] RUSSIAN ACAD SCI,INST PROBLEMS INFORMAT TRANSMISS,MOSCOW 101447,RUSSIA
关键词
QUEUING NETWORKS; HIGHER-ORDER LINDLEY EQUATIONS; STATIONARY SOLUTIONS;
D O I
10.1016/0304-4149(94)90058-2
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A model of a queueing network is proposed which leads to a stochastic equation generalizing a standard Lindley equation for a single FCFS server. We study the problem of the existence and uniqueness of a stationary solution to this equation and its connection with random processes on a Cayley tree.
引用
收藏
页码:65 / 96
页数:32
相关论文
共 18 条
[1]   THE CONTINUUM RANDOM TREE .1. [J].
ALDOUS, D .
ANNALS OF PROBABILITY, 1991, 19 (01) :1-28
[2]  
Andronov A.A., 1971, QUALITATIVE THEORY 2
[3]   QUEUING MODELS FOR SYSTEMS WITH SYNCHRONIZATION CONSTRAINTS [J].
BACCELLI, F ;
MAKOWSKI, AM .
PROCEEDINGS OF THE IEEE, 1989, 77 (01) :138-161
[4]  
BACCELLI F, 1992, J STAT PHYS, V66, P802
[5]  
BACCELLI F, 1987, LECTURE NOTES STATIS, V43
[6]  
BOROVKOV AA, 1980, ASYMPTOTICAL METHODS
[7]  
Brandt A., 1985, Elektronische Informationsverarbeitung und Kybernetik (EIK), V21, P151
[8]  
Brandt A., 1985, Elektronische Informationsverarbeitung und Kybernetik (EIK), V21, P47
[9]  
Bremaud P., 1981, POINT PROCESSES QUEU
[10]  
FELLER W, 1966, INTRO PROBABILITY TH, V1