LOCAL HETEROTIC GEOMETRY IN HOLOMORPHIC COORDINATES

被引:24
作者
BONNEAU, G
VALENT, G
机构
[1] Laboratoire de Physique Théorique et des Hautes Energies, Unité Associée Au CNRS URA 280, Université Paris 7, 75251 Paris Cedex 05
关键词
D O I
10.1088/0264-9381/11/5/004
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In the same spirit as for N = 2 and N = 4 supersymmetric nonlinear sigma models in two spacetime dimensions by Zumino and by Alvarez-Gaume and Freedman, we analyse the (2, 0) and (4, 0) heterotic geometry in holomorphic coordinates. We study the properties of the torsion tensor and give the conditions under which (2, 0) geometry is conformally equivalent to a (2, 2) one. Using additional isometries, we show that it is difficult to equip a manifold with a closed torsion tensor, but for the real four-dimensional case where we exhibit new examples. We show that, contrarily to Callan et al's claim for real four-dimensional manifolds, (4, 0) heterotic geometry is not necessarily conformally equivalent to a (4,4) Kahler-Ricci flat geometry. We rather prove that, whatever the real dimension is, they are special quasi-Ricci flat spaces, and we exemplify our results on Eguchi-Hanson and Taub-NUT metrics with torsion.
引用
收藏
页码:1133 / 1154
页数:22
相关论文
共 29 条
[1]   GEOMETRICAL STRUCTURE AND ULTRAVIOLET FINITENESS IN THE SUPERSYMMETRIC SIGMA-MODEL [J].
ALVAREZGAUME, L ;
FREEDMAN, DZ .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1981, 80 (03) :443-451
[2]  
Atiyah M.F., 1988, GEOMETRY DYNAMICS MA, DOI DOI 10.1515/9781400859306
[3]   LOW-ENERGY SCATTERING OF NON-ABELIAN MONOPOLES [J].
ATIYAH, MF ;
HITCHIN, NJ .
PHYSICS LETTERS A, 1985, 107 (01) :21-25
[4]  
BERGSHOEFF E, 1986, MOD PHYS LETT A, V1, P191
[5]  
BESSE AL, 1987, EINSTEIN MANIFOLDS
[6]  
Bonneau G., 1986, INT J MOD PHYS A, V1, P997
[7]  
Calabi E, 1975, P S PURE MATH, VXXVII, P17
[8]   WORLDSHEET APPROACH TO HETEROTIC INSTANTONS AND SOLITONS [J].
CALLAN, CG ;
HARVEY, JA ;
STROMINGER, A .
NUCLEAR PHYSICS B, 1991, 359 (2-3) :611-634
[9]   GEOMETRY OF SIGMA-MODELS WITH HETEROTIC SUPERSYMMETRY [J].
DELDUC, F ;
KALITZIN, S ;
SOKATCHEV, E .
CLASSICAL AND QUANTUM GRAVITY, 1990, 7 (09) :1567-1582
[10]   NEW GEOMETRY FROM HETEROTIC SUPERSYMMETRY [J].
DELDUC, F ;
VALENT, G .
CLASSICAL AND QUANTUM GRAVITY, 1993, 10 (07) :1201-1215