DIMENSION OF THE KERNEL OF A PLANAR SET

被引:10
作者
BREEN, M
机构
[1] University of oklahoma, Norman, OK
关键词
D O I
10.2140/pjm.1979.82.15
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let S be a compact subset of R2. We establish the following: For 1 ≤ k ≤ 2, the dimension of ker S is at least k if and only if for some ε > 0, every f(k) points of S see via S a common A -dimensional neighborhood having radius ε, where F(1) = 4 and f(2) = 3. The number f(k) in the theorem is best possible. © 1979, University of California, Berkeley. All Rights Reserved.
引用
收藏
页码:15 / 21
页数:7
相关论文
共 6 条
[1]  
BREEN M, UNPUBLISHED
[2]   SETS WITH ZERO-DIMENSIONAL KERNELS [J].
FOLAND, NE ;
MARR, JM .
PACIFIC JOURNAL OF MATHEMATICS, 1966, 19 (03) :429-&
[3]  
Hare W, 1966, NIEUW ARCH WISK, V14, P103
[4]   INTERSECTIONS OF MAXIMAL STARSHAPED SETS [J].
HARE, WR ;
KENELLY, JW .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1968, 19 (06) :1299-&
[5]  
KRASNOSELSKII MA, 1946, MAT SBORNIK, V19, P309
[6]  
Toranzos FA, 1967, NOT AM MATH SOC, V14, P832