PERIODIC-SOLUTIONS OF HAMILTONIAN-SYSTEMS OF 3-BODY TYPE

被引:129
作者
BAHRI, A
RABINOWITZ, PH
机构
[1] RUTGERS STATE UNIV,DEPT MATH,NEW BRUNSWICK,NJ 08903
[2] UNIV WISCONSIN,DEPT MATH,MADISON,WI 53706
[3] UNIV WISCONSIN,CTR MATH SCI,MADISON,WI 53706
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 1991年 / 8卷 / 06期
关键词
3-BODY PROBLEM; PERIODIC SOLUTION; COLLISION; GENERALIZED T-PERIODIC SOLUTION;
D O I
10.1016/S0294-1449(16)30252-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the question of the existence of periodic solutions of Hamiltonian systems of the form: [GRAPHICS] with V (t, xi) T-periodic in t and singular at xi = 0. Under hypotheses on V of 3-body type, we prove that the functional corresponding to (star) has an unbounded sequence of critical points provided that the singularity of V at 0 is strong enough.
引用
收藏
页码:561 / 649
页数:89
相关论文
共 17 条
[1]  
AMBROSETTI A, IN PRESS CRITICAL PO
[2]   A MINIMAX METHOD FOR A CLASS OF HAMILTONIAN-SYSTEMS WITH SINGULAR POTENTIALS [J].
BAHRI, A ;
RABINOWITZ, PH .
JOURNAL OF FUNCTIONAL ANALYSIS, 1989, 82 (02) :412-428
[3]  
BAHRI A, IN PRESS
[4]  
BAHRI A, 1981, THESIS U P M CURIE P
[5]  
BORSUK, SHAPE THEORY
[6]  
DEGIOVANNI M, 1987, NATO ASI SER, V29, P111
[7]  
DOLD A, 1972, LECTURES ALGEBRAIC T
[8]  
EKELAND I, 1984, ANN I H POINCARE ANA, V1, P19
[9]   CONSERVATIVE DYNAMICAL-SYSTEMS INVOLVING STRONG FORCES [J].
GORDON, WB .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 204 (APR) :113-135