ON THE SUM OF SQUARES OF CELL COMPLEXITIES IN HYPERPLANE ARRANGEMENTS

被引:9
作者
ARONOV, B
MATOUSEK, J
SHARIR, M
机构
[1] CHARLES UNIV,DEPT APPL MATH,CS-11800 PRAGUE 1,CZECH REPUBLIC
[2] TEL AVIV UNIV,SCH MATH SCI,IL-69978 TEL AVIV,ISRAEL
[3] NYU,COURANT INST MATH SCI,NEW YORK,NY 10012
基金
美国国家科学基金会;
关键词
D O I
10.1016/0097-3165(94)90027-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let H be a collection of n hyperplanes in R(d), d greater-than-or-equal-to 2. For each cell c of the arrangement of H let f(i)(c) denote the number of faces of c of dimension i, and let f(c) = SIGMA(i = 0)d-1 f(i)(c). We prove that SIGMA(c) f(c)2 = O(n(d) log right perpendicular d/2 left perpendicular - 1 n), where the sum extends over all cells of the arrangement. Among other applications, we show that the total number of faces bounding any m distinct cells in an arrangement of n hyperplanes in R(d) is O(m1/2nd/2 log (right perpendicular d/2 left perpendicular - 1)/2n) and provide a lower bound on the maximum possible face count in m distinct cells, which is close to the upper bound, and for many values of m and n is OMEGA(m1/2n(d/2). (C) 1994 Academic Press, Inc.
引用
收藏
页码:311 / 321
页数:11
相关论文
共 10 条
[1]   COUNTING FACETS AND INCIDENCES [J].
AGARWAL, PK ;
ARONOV, B .
DISCRETE & COMPUTATIONAL GEOMETRY, 1992, 7 (04) :359-369
[2]  
[Anonymous], 1987, EATCS MONOGRAPHS THE
[3]   ON THE ZONE OF A SURFACE IN A HYPERPLANE ARRANGEMENT [J].
ARONOV, B ;
PELLEGRINI, M ;
SHARIR, M .
DISCRETE & COMPUTATIONAL GEOMETRY, 1993, 9 (02) :177-186
[4]  
ARONOV B, IN PRESS DISCRETE CO
[5]  
CHAZELLE B, 1993, IN PRESS COMPUTATION
[6]   COMBINATORIAL COMPLEXITY-BOUNDS FOR ARRANGEMENTS OF CURVES AND SPHERES [J].
CLARKSON, KL ;
EDELSBRUNNER, H ;
GUIBAS, LJ ;
SHARIR, M ;
WELZL, E .
DISCRETE & COMPUTATIONAL GEOMETRY, 1990, 5 (02) :99-160
[7]   APPLICATIONS OF RANDOM SAMPLING IN COMPUTATIONAL GEOMETRY .2. [J].
CLARKSON, KL ;
SHOR, PW .
DISCRETE & COMPUTATIONAL GEOMETRY, 1989, 4 (05) :387-421
[8]   THE COMPLEXITY OF MANY CELLS IN ARRANGEMENTS OF PLANES AND RELATED PROBLEMS [J].
EDELSBRUNNER, H ;
GUIBAS, L ;
SHARIR, M .
DISCRETE & COMPUTATIONAL GEOMETRY, 1990, 5 (02) :197-216
[9]   ON THE ZONE THEOREM FOR HYPERPLANE ARRANGEMENTS [J].
EDELSBRUNNER, H ;
SEIDEL, R ;
SHARIR, M .
SIAM JOURNAL ON COMPUTING, 1993, 22 (02) :418-429
[10]  
Matousek J., 1993, Computational Geometry: Theory and Applications, V2, P279, DOI 10.1016/0925-7721(93)90024-Z