SPLINE APPROXIMATION FOR CAUCHY PRINCIPAL VALUE INTEGRALS

被引:25
作者
ORSI, AP [1 ]
机构
[1] POLITECN TORINO, DIPARTIMENTO MATEMAT, I-10129 TURIN, ITALY
关键词
Cauchy principal value integrals; quadrature rules; splines;
D O I
10.1016/0377-0427(90)90027-W
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove the uniform convergence of some quadrature formulas based on spline approximation for Cauchy principal value integrals of the type fbaw(x)f(k)(x)/x - y dx (k = 0, 1,...) and we present some numerical applications. In particular we apply our rules to the well-known Prandtl's integral equation. © 1990.
引用
收藏
页码:191 / 201
页数:11
相关论文
共 29 条
[1]  
Ahlberg J. H., 1967, THEORY SPLINES THEIR
[2]   PRODUCT INTEGRATION OF LOGARITHMIC SINGULAR INTEGRANDS BASED ON CUBIC-SPLINES [J].
ALAYLIOGLU, A ;
LUBINSKY, DS ;
EYRE, D .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1984, 11 (03) :353-366
[3]  
[Anonymous], [No title captured]
[4]  
Cox M. G., 1972, Journal of the Institute of Mathematics and Its Applications, V10, P134
[5]   ON THE CONVERGENCE OF PRODUCT-FORMULAS FOR THE NUMERICAL EVALUATION OF DERIVATIVES OF CAUCHY PRINCIPAL VALUE INTEGRALS [J].
CRISCUOLO, G ;
MASTROIANNI, G .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1988, 25 (03) :713-727
[6]  
CRISCUOLO G, 1987, MATH COMPUT, V48, P725, DOI 10.1090/S0025-5718-1987-0878702-4
[7]  
CRISCUOLO G, UNPUB J APPROX THEOR
[8]  
de Boor C., 1972, Journal of Approximation Theory, V6, P50, DOI 10.1016/0021-9045(72)90080-9
[9]  
DEBOOR C, 1977, NUMER MATH, V27, P485, DOI 10.1007/BF01399609
[10]   APPROXIMATION BY SPLINE INTERPOLATING BASES [J].
DOMSTA, J .
STUDIA MATHEMATICA, 1976, 58 (03) :223-237