ERROR BOUND AND CONVERGENCE ANALYSIS OF MATRIX SPLITTING ALGORITHMS FOR THE AFFINE VARIATIONAL INEQUALITY PROBLEM

被引:141
作者
Luo, Zhi-Quan [1 ]
Tseng, Paul [2 ]
机构
[1] McMaster Univ, Dept Elect & Comp Engn, Commun Res Lab, Hamilton, ON L8S 4K1, Canada
[2] Univ Washington, Dept Math, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
affine variational inequality; linear complementarity; error bound; matrix splitting; linear convergence;
D O I
10.1137/0802004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider the affine variational inequality problem. It is shown that the distance to the solution set from a feasible point near the solution set can be bounded by the norm of a natural residual at that point. This bound is then used to prove linear convergence of a matrix splitting algorithm for solving the symmetric case of the problem. This latter result improves upon a recent result of Luo and Tseng that further assumes the problem to be monotone.
引用
收藏
页码:43 / 54
页数:12
相关论文
共 31 条
[1]  
Auslender A, 1976, OPTIMISATION METHODE
[2]  
Bertsekas D.P., 1989, PARALLEL DISTRIBUTED
[3]  
COTTLE R. W., 1980, VARIATIONAL INEQUALI
[4]  
COTTLE R. W., 1968, LINEAR ALGEBRA APPL, V1, P103
[5]   SUFFICIENT MATRICES AND THE LINEAR COMPLEMENTARITY-PROBLEM [J].
COTTLE, RW ;
PANG, JS ;
VENKATESWARAN, V .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1989, 114 :231-249
[6]   SOLUTION OF A QUADRATIC PROGRAMMING PROBLEM USING SYSTEMATIC OVERRELAXATION [J].
CRYER, CW .
SIAM JOURNAL ON CONTROL, 1971, 9 (03) :385-&
[7]   LINEAR COMPLEMENTARITY PROBLEM [J].
EAVES, BC .
MANAGEMENT SCIENCE SERIES A-THEORY, 1971, 17 (09) :612-634
[8]  
Hildreth C., 1957, NAV RES LOG, V4, P79
[9]   ON APPROXIMATE SOLUTIONS OF SYSTEMS OF LINEAR INEQUALITIES [J].
HOFFMAN, AJ .
JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS, 1952, 49 (04) :263-265
[10]  
Keller H. B., 1965, SIAM J NUMER ANAL, V2, P281, DOI DOI 10.1137/0702022