LEAF ARRANGEMENT - GEOMETRY, MORPHOGENESIS, AND CLASSIFICATION

被引:29
作者
RICHTER, PH
SCHRANNER, R
机构
[1] Max-Planck-Institut für Biophysikalische Chemie, Göttingen-Nikolausberg
关键词
D O I
10.1007/BF00368372
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The striking universality of the occurrence of Fibonacci numbers in phyllotaxis is analyzed. Geometric investigation shows that Fibonacci patterns are intimately related to the golden divergence angle along the genetic spiral. A simple argument is presented to make this angle plausible by considering inhibitory action in primary pattern formation. The various types of leaf arrangement are related to the spatial and temporal range of the inhibitory influences. © 1978 Springer-Verlag.
引用
收藏
页码:319 / 327
页数:9
相关论文
共 12 条
[1]   MODEL OF CONTACT PRESSURE IN PHYLLOTAXIS [J].
ADLER, I .
JOURNAL OF THEORETICAL BIOLOGY, 1974, 45 (01) :1-79
[2]  
DENFFER DV, 1967, LEHRBUCH BOTANIK
[3]   THEORY OF BIOLOGICAL PATTERN FORMATION [J].
GIERER, A ;
MEINHARDT, H .
KYBERNETIK, 1972, 12 (01) :30-39
[4]  
MEINHARDT H, 1974, J CELL SCI, V15, P321
[5]   PHYLLOTAXIS AND FIBONACCI SERIES [J].
MITCHISON, GJ .
SCIENCE, 1977, 196 (4287) :270-275
[7]  
Schoute JC., 1913, RECL TRAV BOT EERL, V10, P153
[8]  
THOMPSON DW, 1942, GROWTH FORM, pCH4
[9]   PHYLLOTAXIS .2. DESCRIPTION IN TERMS OF INTERSECTING LOGARITHMIC SPIRALS [J].
THORNLEY, JHM .
ANNALS OF BOTANY, 1975, 39 (161) :509-524
[10]   PHYLLOTAXIS .1. MECHANISTIC MODEL [J].
THORNLEY, JHM .
ANNALS OF BOTANY, 1975, 39 (161) :491-507