ANALYSIS OF UNIFORM BINARY SUBDIVISION SCHEMES FOR CURVE DESIGN

被引:118
作者
DYN, N
GREGORY, JA
LEVIN, D
机构
[1] TEL AVIV UNIV,SACKLER FAC EXACT SCI,SCH MATH SCI,IL-69978 TEL AVIV,ISRAEL
[2] BRUNEL UNIV,DEPT MATH & STAT,UXBRIDGE UB8 3PH,MIDDX,ENGLAND
关键词
CURVE DESIGN; CONTROL POLYGON; LIMIT CURVE; SUBDIVISION SCHEME;
D O I
10.1007/BF01888150
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper analyses the convergence of sequences of control polygons produced by a binary subdivision scheme of the form [GRAPHICS] The convergence of the control polygons to a C0 curve is analysed in terms of the convergence to zero of a derived scheme for the differences f(i+1)k - f(i)k. The analysis of the smoothness of the limit curve is reduced to the convergence analysis of "differentiated" schemes which correspond to divided differences of {f(i)k:i member-of Z} with respect to the diadic parametrization t(i)k = i/2k. The inverse process of "integration" provides schemes with limit curves having additional orders of smoothness.
引用
收藏
页码:127 / 147
页数:21
相关论文
共 11 条
[1]  
CHAIKIN GM, 1974, COMPUT GRAPHICS IMAG, V3, P346
[2]  
DAUBECHIES I, IN PRESS SIAM J MATH
[3]  
de Boor C., 1987, Computer-Aided Geometric Design, V4, P125, DOI 10.1016/0167-8396(87)90029-X
[4]  
DERHAM G, 1956, J MATH PURE APPL, V39, P25
[5]   INTERPOLATION THROUGH AN ITERATIVE SCHEME [J].
DUBUC, S .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1986, 114 (01) :185-204
[6]  
DYN J, 1987, COMPUT AIDED GEOM DE, V4, P257
[7]   THEORETICAL DEVELOPMENT FOR THE COMPUTER-GENERATION AND DISPLAY OF PIECEWISE POLYNOMIAL SURFACES [J].
LANE, JM ;
RIESENFELD, RF .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1980, 2 (01) :35-46
[8]   UNIFORM REFINEMENT OF CURVES [J].
MICCHELLI, CA ;
PRAUTZSCH, H .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1989, 114 :841-870
[9]  
Micchelli CA, 1987, NUMERICAL ANAL, P192
[10]  
POWELL MJD, 1988, COMMUNICATION