DERIVING THE INTERMEDIATE SPECTRA AND PHOTOCYCLE KINETICS FROM TIME-RESOLVED DIFFERENCE SPECTRA OF BACTERIORHODOPSIN - THE SIMPLER CASE OF THE RECOMBINANT D96N PROTEIN

被引:59
作者
ZIMANYI, L [1 ]
LANYI, JK [1 ]
机构
[1] UNIV CALIF IRVINE,DEPT PHYSIOL & BIOPHYS,IRVINE,CA 92717
关键词
D O I
10.1016/S0006-3495(93)81360-2
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
The bacteriorhodopsin photocycle contains more than five spectrally distinct intermediates, and the complexity of their interconversions has precluded a rigorous solution of the kinetics. A representation of the photocycle of mutated D96N bacteriorhodopsin near neutral pH was given earlier (Varo, G., and J. K. Lanyi. 1991. Biochemistry. 30:5008-5015) as BR --> hv K <-> L <-> M1 --> M2 --> BR. Here we have reduced a set of time-resolved difference spectra for this simpler system to three base spectra, each assumed to consist of an unknown mixture of the pure K, L, and M difference spectra represented by a 3 X 3 matrix of concentration values between 0 and 1. After generating all allowed sets of spectra for K, L, and M (i.e., M1 + M2) at a 1:50 resolution of the matrix elements, invalid solutions were eliminated progressively in a search based on what is expected, empirically and from the theory of polyene excited states, for rhodopsin spectra. Significantly, the average matrix values changed little after the first and simplest of the search criteria that disallowed negative absorptions and more than one maximum for the M intermediate. We conclude from the statistics that during the search the solutions strongly converged into a narrow region of the multidimensional space of the concentration matrix. The data at three temperatures between 5 and 25-degrees-C yielded a single set of spectra for K, L, and M; their fits are consistent with the earlier derived photocycle model for the D96N protein.
引用
收藏
页码:240 / 251
页数:12
相关论文
共 49 条
[1]   THE ROLE OF BACK-REACTIONS AND PROTON UPTAKE DURING THE N-]O TRANSITION IN BACTERIORHODOPSINS PHOTOCYCLE - A KINETIC RESONANCE RAMAN-STUDY [J].
AMES, JB ;
MATHIES, RA .
BIOCHEMISTRY, 1990, 29 (31) :7181-7190
[2]   RED SHIFT OF THE PURPLE MEMBRANE ABSORPTION-BAND AND THE DEPROTONATION OF TYROSINE RESIDUES AT HIGH PH - ORIGIN OF THE PARALLEL PHOTOCYCLES OF TRANS-BACTERIORHODOPSIN [J].
BALASHOV, SP ;
GOVINDJEE, R ;
EBREY, TG .
BIOPHYSICAL JOURNAL, 1991, 60 (02) :475-490
[3]   ULTRAVIOLET AND VISIBLE ABSORPTION-SPECTRA OF PURPLE MEMBRANE-PROTEIN AND PHOTOCYCLE INTERMEDIATES [J].
BECHER, B ;
TOKUNAGA, F ;
EBREY, TG .
BIOCHEMISTRY, 1978, 17 (12) :2293-2300
[4]   POSSIBLE INFLUENCE OF A LOW-LYING COVALENT EXCITED-STATE ON ABSORPTION-SPECTRUM AND PHOTOISOMERIZATION OF 11-CIS RETINAL [J].
BIRGE, RR ;
SCHULTEN, K ;
KARPLUS, M .
CHEMICAL PHYSICS LETTERS, 1975, 31 (03) :451-454
[5]   ON THE MULTIPLE CYCLES OF BACTERIORHODOPSIN AT HIGH PH [J].
BITTING, HC ;
JANG, DJ ;
ELSAYED, MA .
PHOTOCHEMISTRY AND PHOTOBIOLOGY, 1990, 51 (05) :593-598
[6]   RESONANCE RAMAN-SPECTRA OF BACTERIORHODOPSINS PRIMARY PHOTOPRODUCT - EVIDENCE FOR A DISTORTED 13-CIS RETINAL CHROMOPHORE [J].
BRAIMAN, M ;
MATHIES, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1982, 79 (02) :403-407
[7]   VIBRATIONAL SPECTROSCOPY OF BACTERIORHODOPSIN MUTANTS - LIGHT-DRIVEN PROTON TRANSPORT INVOLVES PROTONATION CHANGES OF ASPARTIC-ACID RESIDUE-85, RESIDUE-96, AND RESIDUE-212 [J].
BRAIMAN, MS ;
MOGI, T ;
MARTI, T ;
STERN, LJ ;
KHORANA, HG ;
ROTHSCHILD, KJ .
BIOCHEMISTRY, 1988, 27 (23) :8516-8520
[8]   TEMPERATURE JUMP STUDY OF CHARGE TRANSLOCATION DURING THE BACTERIORHODOPSIN PHOTOCYCLE [J].
BUTT, HJ ;
FENDLER, K ;
DER, A ;
BAMBERG, E .
BIOPHYSICAL JOURNAL, 1989, 56 (05) :851-859
[9]   ASPARTIC ACID-96 AND ASPARTIC ACID-85 PLAY A CENTRAL ROLE IN THE FUNCTION OF BACTERIORHODOPSIN AS A PROTON PUMP [J].
BUTT, HJ ;
FENDLER, K ;
BAMBERG, E ;
TITTOR, J ;
OESTERHELT, D .
EMBO JOURNAL, 1989, 8 (06) :1657-1663
[10]   WATER IS REQUIRED FOR PROTON-TRANSFER FROM ASPARTATE-96 TO THE BACTERIORHODOPSIN SCHIFF-BASE [J].
CAO, Y ;
VARO, G ;
CHANG, M ;
NI, BF ;
NEEDLEMAN, R ;
LANYI, JK .
BIOCHEMISTRY, 1991, 30 (45) :10972-10979