REMARKS ON THE LURIA-DELBRUCK DISTRIBUTION

被引:29
作者
PAKES, AG
机构
关键词
D O I
10.2307/3214530
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
引用
收藏
页码:991 / 994
页数:4
相关论文
共 11 条
[1]  
[Anonymous], 1964, ELEMENTS STOCHASTIC
[2]  
Bartlett M.S., 1978, INTRO STOCHASTIC PRO
[3]   FUNCTIONS OF PROBABILITY MEASURES [J].
CHOVER, J ;
NEY, P ;
WAINGER, S .
JOURNAL D ANALYSE MATHEMATIQUE, 1973, 26 :255-302
[4]  
Douglas J. B., 1980, ANAL STANDARD CONTAG
[5]  
EMBRECHTS P, 1982, J AUST MATH SOC A, V32, P412, DOI 10.1017/S1446788700024976
[6]  
Jolley L. B. W., 1961, SUMMATION SERIES
[7]   ANALYSIS OF THE LURIA-DELBRUCK DISTRIBUTION USING DISCRETE CONVOLUTION POWERS [J].
MA, WT ;
SANDRI, GV ;
SARKAR, S .
JOURNAL OF APPLIED PROBABILITY, 1992, 29 (02) :255-267
[8]   POPULATION BIRTH-AND-MUTATION PROCESS .1. EXPLICIT DISTRIBUTIONS FOR NUMBER OF MUTANTS IN AN OLD CULTURE OF BACTERIA [J].
MANDELBROT, B .
JOURNAL OF APPLIED PROBABILITY, 1974, 11 (03) :437-444
[9]  
Ord J.K., 1972, FAMILIES FREQUENCY D
[10]   ON FLUCTUATION ANALYSIS - A NEW, SIMPLE AND EFFICIENT METHOD FOR COMPUTING THE EXPECTED NUMBER OF MUTANTS [J].
SARKAR, S ;
MA, WT ;
SANDRI, GV .
GENETICA, 1992, 85 (02) :173-179