THE METHOD OF LOWER AND UPPER SOLUTIONS FOR 2ND, 3RD, 4TH, AND HIGHER-ORDER BOUNDARY-VALUE-PROBLEMS

被引:184
作者
CABADA, A
机构
[1] Departamento de Análise Matemática, Facultade de Matemáticas, Universidade de Santiago de Compostela, Santiago
关键词
D O I
10.1006/jmaa.1994.1250
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we develop the monotone method in the presence of lower and upper solutions for the problem u(n)(t) = f(t, u(t)); u(i)(a) - u(i)(b) = lambda(i) is-an-element-of R; i = 0, ..., n - 1 Where f is a Caratheodory function. We obtain necessary and sufficient conditions in f to guarantee the existence of solutions between a lower solution alpha and an upper solution beta for n = 2 (if alpha greater-than-or-equal-to beta), n = 3 (either alpha less-than-or-equal-to beta or a greater-than-or-equal-to beta) and n = 4 (if alpha less-than-or-equal-to beta). Furthermore, we obtain sufficient conditions in f for n = 2k greater-than-or-equal-to 6 when alpha less-than-or-equal-to beta. (C) 1994 Academic Press, Inc.
引用
收藏
页码:302 / 320
页数:19
相关论文
共 14 条
[1]  
Bernfeld S., 1974, INTRO NONLINEAR BOUN
[2]   EXTREMAL SOLUTIONS OF 2ND-ORDER NONLINEAR PERIODIC BOUNDARY-VALUE-PROBLEMS [J].
CABADA, A ;
NIETO, JJ .
APPLIED MATHEMATICS AND COMPUTATION, 1990, 40 (02) :135-145
[3]   A GENERALIZATION OF THE MONOTONE ITERATIVE TECHNIQUE FOR NONLINEAR 2ND-ORDER PERIODIC BOUNDARY-VALUE-PROBLEMS [J].
CABADA, A ;
NIETO, JJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1990, 151 (01) :181-189
[4]  
Cabada A., 1992, THESIS U SANTIAGO CO
[5]  
Ladde G.S., 1985, MONOTONE ITERATIVE T
[6]  
Nieto J. J., 1989, APPL ANAL, V34, P111
[7]  
Nieto J.J., 1992, J APPL MATH STOCH AN, V5, P157
[9]  
NIETO JJ, 1991, COMMENTAT MATH U CAR, V0032, P00495
[10]   REMARKS ON THE LOWER AND UPPER SOLUTIONS METHOD FOR 2ND-ORDER AND 3RD-ORDER PERIODIC BOUNDARY-VALUE-PROBLEMS [J].
OMARI, P ;
TROMBETTA, M .
APPLIED MATHEMATICS AND COMPUTATION, 1992, 50 (01) :1-21