ON THE FRACTAL STRUCTURE AND STATISTICS OF CONTOUR LINES ON A SELF-AFFINE SURFACE

被引:23
作者
MATSUSHITA, M [1 ]
OUCHI, S [1 ]
HONDA, K [1 ]
机构
[1] NAGOYA UNIV,FAC ENGN,DEPT APPL PHYS,NAGOYA 46401,JAPAN
关键词
D O I
10.1143/JPSJ.60.2109
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Contour lines of a self-affine surface with a specified value of Hurst exponent H show certain special characteristics in fractal structure and statistics. The first argument is that the fractal dimension D(e) of an entire pattern formed by contour lines of the same altitude, similar to coastlines, should be distinguished from the fractal dimension D(c) of single contour lines. It is then confirmed that D(e) = 2 - H. The exponent zeta-characterizing a power-law form of the size distribution of closed contour lines, similar to islands, is found to be equal to D(e). Self-avoiding fractional Brownian motion is newly introduced to derive a new scaling law D(c) = 2/(1 + H).
引用
收藏
页码:2109 / 2112
页数:4
相关论文
共 13 条
[1]  
[Anonymous], 1979, SCALING CONCEPTS POL
[2]  
Feder J., 1988, FRACTALS
[3]  
Mandelbrot B. B., 1982, FRACTAL GEOMETRY NAT, P1
[4]  
Mandelbrot B. B., 1986, FRACTALS PHYS, P3, DOI [10.1016/B978-0-444-86995-1.50004-4, DOI 10.1016/B978-0-444-86995-1.50004-4]
[5]   CLUSTER-SIZE DISTRIBUTION OF SELF-AFFINE FRACTALS [J].
MATSUSHITA, M ;
MEAKIN, P .
PHYSICAL REVIEW A, 1988, 37 (09) :3645-3648
[6]   ON THE SELF-AFFINITY OF VARIOUS CURVES [J].
MATSUSHITA, M ;
OUCHI, S .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1989, 58 (05) :1489-1492
[7]   ON THE SELF-AFFINITY OF VARIOUS CURVES [J].
MATSUSHITA, M ;
OUCHI, S .
PHYSICA D, 1989, 38 (1-3) :246-251
[8]  
Matsushita M., 1989, FRACTAL APPROACH HET, P161
[9]  
Peitgen H., 1988, SCI FRACTAL IMAGES
[10]  
SAUPE D, 1988, SCI FRACTAL IMAGES, pCH2