CHAOS IN A PERIODICALLY FORCED PREDATOR-PREY ECOSYSTEM MODEL

被引:72
作者
SABIN, GCW [1 ]
SUMMERS, D [1 ]
机构
[1] MEM UNIV NEWFOUNDLAND,DEPT MATH & STAT,ST JOHNS A1C 5S7,NEWFOUNDLAND,CANADA
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1016/0025-5564(93)90010-8
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We subject to periodic forcing the classical Volterra predator-prey ecosystem model, which in its unforced state has a globally stable focus as its equilibrium. The periodic forcing is effected by assuming a periodic variation in the intrinsic growth rate of the prey. In nondimensional form the forced system contains four control parameters, including the forcing amplitude and forcing frequency. Numerical experiments carried out over sections of the parameter space reveal an abundance of steady-state chaotic solutions. We graph Poincare maps and calculate Lyapunov exponents and fractal dimensions for a representative selection of strange attractors. The transitions to chaos were found to be either via a Feigenbaum cascade of period-doubling bifurcations or via frequency locking.
引用
收藏
页码:91 / 113
页数:23
相关论文
共 41 条
[2]  
[Anonymous], 2012, PRACTICAL NUMERICAL
[3]   STRANGE ATTRACTORS IN VOLTERRA-EQUATIONS FOR SPECIES IN COMPETITION [J].
ARNEODO, A ;
COULLET, P ;
PEYRAUD, J ;
TRESSER, C .
JOURNAL OF MATHEMATICAL BIOLOGY, 1982, 14 (02) :153-157
[4]  
Cvitanovic Predrag, 1984, U CHAOS
[5]   CHAOTIC STATES AND ROUTES TO CHAOS IN THE FORCED PENDULUM [J].
DHUMIERES, D ;
BEASLEY, MR ;
HUBERMAN, BA ;
LIBCHABER, A .
PHYSICAL REVIEW A, 1982, 26 (06) :3483-3496
[6]   THE DIMENSION OF CHAOTIC ATTRACTORS [J].
FARMER, JD ;
OTT, E ;
YORKE, JA .
PHYSICA D-NONLINEAR PHENOMENA, 1983, 7 (1-3) :153-180
[7]   HOPF-BIFURCATION AND TRANSITION TO CHAOS IN LOTKA-VOLTERRA EQUATION [J].
GARDINI, L ;
LUPINI, R ;
MESSIA, MG .
JOURNAL OF MATHEMATICAL BIOLOGY, 1989, 27 (03) :259-272
[8]  
Gause G., 1934, STRUGGLE EXISTENCE, DOI DOI 10.5962/BHL.TITLE.4489
[9]   SPIRAL CHAOS IN A PREDATOR-PREY MODEL [J].
GILPIN, ME .
AMERICAN NATURALIST, 1979, 113 (02) :306-308
[10]   MEASURING THE STRANGENESS OF STRANGE ATTRACTORS [J].
GRASSBERGER, P ;
PROCACCIA, I .
PHYSICA D, 1983, 9 (1-2) :189-208