CALCULATION OF THE SHANNON INFORMATION

被引:4
作者
BAKER, CR
机构
[1] Department of Statistics, University of North Carolina, Chapel Hill
关键词
D O I
10.1016/0022-247X(79)90181-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (Ω, β, μX) and (v{inverted}, F, μN) be probability spaces, with f: Ω × v{inverted} ⇒ v{inverted} a β × F|F measurable map. Define μXY on β × F by μXY(A) = μX ⊗ μN{(x, y): (x, f(x, y)) ε{lunate} A}, and let μY = (μX ⊗ μN)o f-1. An expression is determined for computing the Shannon information in the measure μXY. This expression is used to compute the information for the non-linear additive Gaussian channel, and can be used to solve the channel capacity problem. © 1979.
引用
收藏
页码:115 / 123
页数:9
相关论文
共 13 条
[1]   CAPACITY OF GAUSSIAN CHANNEL WITHOUT FEEDBACK [J].
BAKER, CR .
INFORMATION AND CONTROL, 1978, 37 (01) :70-89
[2]   EQUIVALENCE OF PROBABILITY MEASURES [J].
BAKER, CR .
ANNALS OF PROBABILITY, 1973, 1 (04) :690-698
[3]  
BAKER CR, 1976, LECT NOTES MATH, P1
[4]  
Gel'fand I. M., 1957, USP MAT NAUK, V12, p[3, 199]
[5]  
Gelfand I.M., 1959, AM MATH SOC TRANSL 2, V12, P199
[6]  
HAJEK J, 1958, CZECH MATH J, V8
[7]  
Hajek J., 1958, CZECH MATH J, V8, P460
[8]  
Hewitt E., 1965, REAL ABSTRACT ANAL
[9]   MUTUAL INFORMATION OF WHITE GAUSSIAN CHANNEL WITH AND WITHOUT FEEDBACK [J].
KADOTA, TT ;
ZAKAI, M ;
ZIV, J .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1971, 17 (04) :368-+
[10]  
KALLIANPUR G, 1960, CONTRIBUTIONS PROBAB, P265