MAXIMUM DENSITY SPACE PACKING WITH PARALLEL STRINGS OF SPHERES

被引:2
作者
BEZDEK, A [1 ]
KUPERBERG, W [1 ]
MAKAI, E [1 ]
机构
[1] HUNGARIAN ACAD SCI, MATH RES INST, H-1035 BUDAPEST, HUNGARY
关键词
D O I
10.1007/BF02574689
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A string of spheres is a sequence of nonoverlapping unit spheres in R3 whose centers are collinear and such that each sphere is tangent to exactly two other spheres. We prove that if a packing with spheres in R3 consists of parallel translates of a string of spheres, then the density of the packing is smaller than or equal to pi/ square-root 18. This density is attained in the well-known densest lattice sphere packing. A long-standing conjecture is that this density is maximum among all sphere packings in space, to which our proof can be considered a partial result.
引用
收藏
页码:277 / 283
页数:7
相关论文
共 10 条
[1]  
[Anonymous], ANN U SCI BUDAPEST M
[2]  
BOROCZKY K, 1975, PERIOD MATH HUNG, V6, P109
[3]  
Delaunay B., 1934, IZV AKAD NAUK SSSR O, V6, P793
[4]  
Dirichlet GL., 1850, J REINE ANGEW MATH, V40, P209, DOI DOI 10.1515/CRLL.1850.40.209
[5]  
Fejes Toth L, 1972, LAGERUNGEN EBENE KUG
[6]  
Gauss C. G., 1840, J REINE ANGEW MATH, V20, P312, DOI [10.1515/crll.1840.20.312, DOI 10.1515/CRLL.1840.20.312]
[7]  
ROGERS CA, 1964, PACKING COVERING, P1
[8]  
Toth G. Fejes, 1983, CONVEXITY ITS APPL C, P318
[9]  
WOODS AC, COMMUNICATION
[10]  
Yaglom I. M., 1961, CONVEX FIGURES