STOCHASTIC ONLINE KNAPSACK-PROBLEMS

被引:90
作者
MARCHETTISPACCAMELA, A
VERCELLIS, C
机构
[1] POLITECN MILAN,DIPARTIMENTO ECON & PROD,I-20133 MILAN,ITALY
[2] UNIV ROMA LA SAPIENZA,DIPARTIMENTO INFORMAT & SISTEMIST,ROME,ITALY
关键词
KNAPSACK PROBLEMS; ONLINE ALGORITHMS; STOCHASTIC INTEGER PROGRAMMING;
D O I
10.1007/BF01585758
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Different classes of on-line algorithms are developed and analyzed for the solution of {0, 1} and relaxed stochastic knapsack problems, in which both profit and size coefficients are random variables. In particular, a linear time on-line algorithm is proposed for which the expected difference between the optimum and the approximate solution value is O(log(3/2) n). An Omega(1) lower bound on the expected difference between the optimum and the solution found by any on-line algorithm is also shown to hold.
引用
收藏
页码:73 / 104
页数:32
相关论文
共 19 条
[1]  
Breiman L., 1968, PROBABILITY
[2]   MULTI-CONSTRAINED MATROIDAL KNAPSACK-PROBLEMS [J].
CAMERINI, PM ;
MAFFIOLI, F ;
VERCELLIS, C .
MATHEMATICAL PROGRAMMING, 1989, 45 (02) :211-231
[3]  
Chung K. L., 1974, COURSE PROBABILITY T
[4]  
COFFMAN E, 1986, 18TH P ANN ACM S THE, P77
[5]   ANALYSIS OF HEURISTICS FOR STOCHASTIC-PROGRAMMING - RESULTS FOR HIERARCHICAL SCHEDULING PROBLEMS [J].
DEMPSTER, MAH ;
FISHER, ML ;
JANSEN, L ;
LAGEWEG, BJ ;
LENSTRA, JK ;
KAN, HGR .
MATHEMATICS OF OPERATIONS RESEARCH, 1983, 8 (04) :525-537
[6]   PROBABILISTIC ANALYSIS OF THE MULTIDIMENSIONAL KNAPSACK-PROBLEM [J].
DYER, ME ;
FRIEZE, AM .
MATHEMATICS OF OPERATIONS RESEARCH, 1989, 14 (01) :162-176
[7]  
GOLDBERG AV, 1984, 16TH P ANN ACM S THE, P359
[8]  
HOEFFDING W, 1963, J AM STAT ASSOC, V3, P13
[9]  
Horowitz E., 1978, FUNDAMENTALS COMPUTE
[10]   FAST APPROXIMATION ALGORITHMS FOR KNAPSACK AND SUM OF SUBSET PROBLEMS [J].
IBARRA, OH ;
KIM, CE .
JOURNAL OF THE ACM, 1975, 22 (04) :463-468