ON OPTIMAL-SOLUTIONS OF THE DECONVOLUTION PROBLEM

被引:7
作者
ERMAKOV, M
机构
[1] Sci. Res. Inst. of Phys., Leningrad State Univ.
关键词
D O I
10.1088/0266-5611/6/5/012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The asymptotic behaviour of minimax and Bayes risks are studied for the deconvolution problem as a power of noise tends to zero. Under wide assumptions the author shows that the convergence order of the regularization method does not depend on the regularizer and is optimal for both Bayes and minimax risks. The author finds the connection between the orders of convergence of minimax and Bayes risks and proposes a simple algorithm for their calculation.
引用
收藏
页码:863 / 872
页数:10
相关论文
共 15 条
[1]  
AREFIEVA M, 1985, J COMPUT MATH MATH P, V25, P654
[2]  
AREFIEVA M, 1986, J COMPUT MATH MATH P, V26, P23
[3]  
ERMAKOV M, 1989, PROBL T INFORM, V25, P28
[4]  
ERMAKOV M, 1986, 1ST WORLD C PROB THE, V1, P181
[5]  
GONCHARSKII AV, 1972, ZH VYCHISL MAT MAT F, V12, P762
[6]  
IVANOV V, 1975, J COMPUT MATH MATH P, V15, P3
[7]   ROBUST TECHNIQUES FOR SIGNAL-PROCESSING - A SURVEY [J].
KASSAM, SA ;
POOR, HV .
PROCEEDINGS OF THE IEEE, 1985, 73 (03) :433-481
[8]   OPTIMAL ESTIMATION OF LINEAR-OPERATORS IN HILBERT SPACES FROM INACCURATE DATA [J].
MELKMAN, AA ;
MICCHELLI, CA .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1979, 16 (01) :87-105
[9]  
MOROSOV A, 1974, REGULAR METHODS SOLU
[10]   SPLINE SMOOTHING AND OPTIMAL RATES OF CONVERGENCE IN NONPARAMETRIC REGRESSION-MODELS [J].
SPECKMAN, P .
ANNALS OF STATISTICS, 1985, 13 (03) :970-983