STOCHASTIC RUNGE-KUTTA ALGORITHMS .1. WHITE-NOISE

被引:394
作者
HONEYCUTT, RL
机构
[1] David Taylor Research Center, Bethesda
来源
PHYSICAL REVIEW A | 1992年 / 45卷 / 02期
关键词
D O I
10.1103/PhysRevA.45.600
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A higher-order algorithm for the numerical integration of one-variable, additive, white-noise equations is developed. The method of development is to extend standard deterministic Runge-Kutta algorithms to include stochastic terms. The ability of the algorithm to generate proper correlation properties is tested on the Omstein-Uhlenbeck process, showing higher accuracy even with longer step size.
引用
收藏
页码:600 / 603
页数:4
相关论文
共 10 条
[1]  
[Anonymous], 1984, SPRINGER SERIES SYNE
[2]  
[Anonymous], 1986, NUMERICAL RECIPES
[3]   FAST, ACCURATE ALGORITHM FOR NUMERICAL-SIMULATION OF EXPONENTIALLY CORRELATED COLORED NOISE [J].
FOX, RF ;
GATLAND, IR ;
ROY, R ;
VEMURI, G .
PHYSICAL REVIEW A, 1988, 38 (11) :5938-5940
[4]   NUMERICAL SIMULATIONS OF STOCHASTIC DIFFERENTIAL-EQUATIONS [J].
FOX, RF .
JOURNAL OF STATISTICAL PHYSICS, 1989, 54 (5-6) :1353-1366
[5]  
Gardiner C.W., 1985, HDB STOCHASTIC METHO
[6]  
HONEYCUTT RL, 1990, THESIS GEORGIA I TEC
[7]   NUMERICAL-INTEGRATION OF MULTIPLICATIVE-NOISE STOCHASTIC DIFFERENTIAL-EQUATIONS [J].
KLAUDER, JR ;
PETERSEN, WP .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1985, 22 (06) :1153-1166
[8]   FAST AND PRECISE ALGORITHM FOR COMPUTER-SIMULATION OF STOCHASTIC DIFFERENTIAL-EQUATIONS [J].
MANNELLA, R ;
PALLESCHI, V .
PHYSICAL REVIEW A, 1989, 40 (06) :3381-3386
[9]   ANALYTICAL AND NUMERICAL-STUDIES OF MULTIPLICATIVE NOISE [J].
SANCHO, JM ;
MIGUEL, MS ;
KATZ, SL ;
GUNTON, JD .
PHYSICAL REVIEW A, 1982, 26 (03) :1589-1609
[10]  
vanKampen N. G., 1981, STOCHASTIC PROCESSES