REDUCTION TO CONDENSED FORM FOR THE EIGENVALUE PROBLEM ON DISTRIBUTED MEMORY ARCHITECTURES

被引:32
作者
DONGARRA, JJ
VANDEGEIJN, RA
机构
[1] OAK RIDGE NATL LAB,MATH SCI SECT,OAK RIDGE,TN 37831
[2] UNIV TEXAS,DEPT COMP SCI,AUSTIN,TX 78712
基金
美国国家科学基金会;
关键词
EIGENVALUE PROBLEM; LINEAR ALGEBRA; LAPACK; DISTRIBUTED MEMORY ARCHITECTURE;
D O I
10.1016/0167-8191(92)90011-U
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we describe a parallel implementation for the reduction of general and symmetric matrices to Hessenberg and tridiagonal form, respectively. The methods are based on LAPACK sequential codes and use a panel-wrapped mapping of matrices to nodes. Results from experiments on the Intel Touchstone Delta are given.
引用
收藏
页码:973 / 982
页数:10
相关论文
共 13 条
[1]  
ANDERSON E, 1991, 6TH DISTR MEM COMP C, P287
[2]   A PARALLEL HOUSEHOLDER TRIDIAGONALIZATION STRATAGEM USING SCATTERED SQUARE DECOMPOSITION [J].
CHANG, HY ;
UTKU, S ;
SALAMA, M ;
RAPP, D .
PARALLEL COMPUTING, 1988, 6 (03) :297-311
[3]  
CHANG HY, 1987, INT J NUMER METH ENG, V26, P857
[4]  
DONGARRA J, 1990, LAPACK24 U TENN WORK
[5]   AN EXTENDED SET OF FORTRAN BASIC LINEAR ALGEBRA SUBPROGRAMS [J].
DONGARRA, JJ ;
DUCROZ, J ;
HAMMARLING, S ;
HANSON, RJ .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1988, 14 (01) :1-17
[6]  
DONGARRA JJ, 1990, ACM T MATH SOFTWARE, V16, P1, DOI 10.1145/77626.79170
[7]  
DONGARRA JJ, 1989, J COMPUTAT APPLIED M, V27
[8]   FINDING EIGENVALUES AND EIGENVECTORS OF UNSYMMETRIC MATRICES USING A DISTRIBUTED-MEMORY MULTIPROCESSOR [J].
GEIST, GA ;
DAVIS, GJ .
PARALLEL COMPUTING, 1990, 13 (02) :199-209
[9]   COMPLEXITY OF DENSE-LINEAR-SYSTEM SOLUTION ON A MULTIPROCESSOR RING [J].
IPSEN, ICF ;
SAAD, Y ;
SCHULTZ, MH .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1986, 77 :205-239
[10]  
JUSZCZAK GW, 1989, TR8938 U TEX AUST TE