CYCLIC ARCS IN PG(2, Q)

被引:9
作者
STORME, L [1 ]
VANMALDEGHEM, H [1 ]
机构
[1] STATE UNIV GHENT,DEPT PURE MATH & COMP ALGEBRA,B-9000 GHENT,BELGIUM
关键词
K-ARC; CONIC; MDS CODE; CYCLIC GROUP;
D O I
10.1023/A:1022454221497
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
B.C. Kestenband [91, J.C. Fisher, J.WR Hirschfeld, and J.A. Thas [31, E. Boros, and T. Szonyi [1] constructed complete (q2 - q + 1)-arcs in PG(2, q2), q greater-than-or-equal-to 3. One of the interesting properties of these arcs is the fact that they are fixed by a cyclic projective group of order q2 - q + 1. We investigate the following problem: What are the complete k-arcs in PG(2, q) which are fixed by a cyclic projective group of order k? This article shows that there are essentially three types of those arcs, one of which is the conic in PG(2, q), q odd. For the other two types, concrete examples are given which shows that these types also occur.
引用
收藏
页码:113 / 128
页数:16
相关论文
共 16 条
[1]   ON THE SHARPNESS OF A THEOREM OF SEGRE,B. [J].
BOROS, E ;
SZONYI, T .
COMBINATORICA, 1986, 6 (03) :261-268
[2]  
Dembowski P., 1968, FINITE GEOMETRIES
[3]  
Fisher J.C., 1986, ANN DISCRETE MATH, V30, P243
[4]  
Hirschfeld J. W. P., 1985, OXFORD MATH MONOGRAP
[5]  
Hirschfeld JWP, 1998, PROJECTIVE GEOMETRIE, V2nd
[6]  
HIRSCHFELD JWP, 1991, GENERAL GALOIS GEOME
[7]  
Hughes D. R., 1973, GRADUATE TEXTS MATH
[8]  
Huppert B., 1967, ENDLICHE GRUPPEN
[9]  
Kestenband B.C., 1989, C MATH, V57, P59
[10]  
Lombardo-Radice, 1956, B UNIONE MAT ITAL, V11, P178