SAMPLING PROCEDURES IN FUNCTION-SPACES AND SYMPTOTIC EQUIVALENCE WITH SHANNON SAMPLING THEORY

被引:162
作者
ALDROUBI, A [1 ]
UNSER, M [1 ]
机构
[1] NIH, BIOMED ENGN & INSTRUMENTAT PROGRAM, BETHESDA, MD 20892 USA
关键词
D O I
10.1080/01630569408816545
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We view Shannon's sampling procedure as a problem of approximation in the space S = {s:s(x) = (c * sinc)(x), c is-an-element-of l2}. We show that under suitable conditions on a generating function lambda is-an-element-of L2, the approximation problem onto the space V = {v:v(x) = (c * lambda)(x), c is-an-element-of l2}, produces a sampling procedure similar to the classical one. It consists of an optimal prefiltering, a pure jitter-stable sampling, and a postfiltering for the reconstruction. We describe equivalent signal representations using generic, dual, cardinal, and orthogonal basis functions and give the expression of the corresponding filters. We then consider sequences lambda(n), where lambda(n) denotes the n-fold convolution of lambda. They provide a sequence of increasingly regular sampling schemes as the value of n increases. We show that the cardinal and orthogonal pre- and postfilters associated with these sequences asymptotically converge to the ideal lowpass filter of Shannon. The theory is illustrated using several examples.
引用
收藏
页码:1 / 21
页数:21
相关论文
共 28 条
[1]  
Adams R. A., 1975, SOBOLEV SPACES
[2]   CARDINAL SPLINE FILTERS - STABILITY AND CONVERGENCE TO THE IDEAL SINC INTERPOLATOR [J].
ALDROUBI, A ;
UNSER, M ;
EDEN, M .
SIGNAL PROCESSING, 1992, 28 (02) :127-138
[3]   FAMILIES OF MULTIRESOLUTION AND WAVELET SPACES WITH OPTIMAL PROPERTIES [J].
ALDROUBI, A ;
UNSER, M .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1993, 14 (5-6) :417-446
[4]  
ALDROUBI A, 1992, WAVELETS TUTORIAL TH, P509
[5]  
[Anonymous], 1959, J MATH PHYS CAMB
[6]  
Benedetto J.J., 1992, WAVELETS TUTORIAL TH, P445
[7]   OPTIMUM PREFILTERING OF SAMPLED DATA [J].
BROWN, WM .
IRE TRANSACTIONS ON INFORMATION THEORY, 1961, 7 (04) :269-&
[8]  
Butzer P.L., 1983, J MATH RES EXPOSITIO, V3, P185
[9]   CONVERGENCE OF CARDINAL SERIES [J].
DEBOOR, C ;
HOLLIG, K ;
RIEMENSCHNEIDER, S .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 98 (03) :457-460
[10]  
Feller W., 1971, INTRO PROBABILITY TH, VVolume II