GENETIC GRAPH - REPRESENTATION FOR THE EVOLUTION OF PROCEDURAL KNOWLEDGE

被引:30
作者
GOLDSTEIN, IP
机构
[1] Xerox Palo Alto Research, Palo Alto, California, 94304
来源
INTERNATIONAL JOURNAL OF MAN-MACHINE STUDIES | 1979年 / 11卷 / 01期
基金
美国国家科学基金会;
关键词
AI; CAI; ICAI; information processing psychology; knowledge representation; learning;
D O I
10.1016/S0020-7373(79)80005-X
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
I shall describe a model of the evolution of rule-structured knowledge that serves as a cornerstone of our development of computer-based coaches. The key idea is a graph structure whose nodes represent rules, and whose links represent various evolutionary relationships such as generalization, correction, and refinement. I shall define this graph and describe a student simulation testbed which we are using to analyze different genetic graph formulations of the reasoning skills required to play an elementary mathematical game. © 1979, Academic Press Inc. (London) Limited. All rights reserved.
引用
收藏
页码:51 / 77
页数:27
相关论文
共 36 条
[1]   MODEL-DRIVEN QUESTION-ANSWERING SYSTEM FOR MIXED-INITIATIVE COMPUTER-ASSISTED CONSTRUCTION [J].
BROWN, JS ;
BURTON, RR ;
ZDYBEL, F .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1973, SMC3 (03) :248-257
[2]  
BROWN JS, 1977, 1977 P ANN C ASS COM, P247
[3]  
BROWN JS, 1977, ICAI10
[4]  
BROWN R, 1977, AI403 MIT TECHN REP
[5]  
BURTON R, 1977, BBN3587 REP
[6]  
BURTON R, ICAI5 REP
[7]  
Carbonell J. R., 1970, IEEE T MAN MACHINE S, V11
[8]  
CARR B, AI40 MIT MEM
[9]  
CARR B, 1977, AI417 MIT MEM
[10]  
CARR B, 1977, AI406 MIT MEM