CANTORI FOR MULTIHARMONIC MAPS

被引:24
作者
BAESENS, C [1 ]
MACKAY, RS [1 ]
机构
[1] CENS,LAB LEON BRILLOUIN,F-91191 GIF SUR YVETTE,FRANCE
来源
PHYSICA D | 1993年 / 69卷 / 1-2期
关键词
D O I
10.1016/0167-2789(93)90180-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We compute all the cantori and their gap and turnstile structures, for area-preserving twist maps near non-degenerate anti-integrable limits with arbitrarily many wells per period. The results imply a rich bifurcation diagram for cantori of families of maps containing degenerate anti-integrable limits. We conjecture the structure of this bifurcation diagram in the case of the two-harmonic family.
引用
收藏
页码:59 / 76
页数:18
相关论文
共 20 条
[1]   EQUIVALENCE OF UNIFORM HYPERBOLICITY FOR SYMPLECTIC TWIST MAPS AND PHONON GAP FOR FRENKEL-KONTOROVA MODELS [J].
AUBRY, S ;
MACKAY, RS ;
BAESENS, C .
PHYSICA D, 1992, 56 (2-3) :123-134
[2]   CHAOTIC TRAJECTORIES IN THE STANDARD MAP - THE CONCEPT OF ANTIINTEGRABILITY [J].
AUBRY, S ;
ABRAMOVICI, G .
PHYSICA D-NONLINEAR PHENOMENA, 1990, 43 (2-3) :199-219
[3]  
BAESENS C, 1993, ONE 2 HOLE TRANSITIO
[4]  
BANGERT V, 1988, DYNAMICS REPORTED, V1
[5]   THRESHOLD BEHAVIOR OF A DRIVEN INCOMMENSURATE HARMONIC CHAIN [J].
COPPERSMITH, SN ;
FISHER, DS .
PHYSICAL REVIEW A, 1988, 38 (12) :6338-6350
[6]  
GOROFF DL, 1985, ERGOD THEOR DYN SYST, V5, P337
[7]   HIGHER-ORDER FIXED-POINTS OF THE RENORMALIZATION OPERATOR FOR INVARIANT CIRCLES [J].
GREENE, JM ;
MAO, JM .
NONLINEARITY, 1990, 3 (01) :69-78
[8]   EXACTLY SOLVABLE MODEL FOR CANTORUS PHASE-TRANSITIONS [J].
GRIFFITHS, RB ;
SCHELLNHUBER, HJ ;
URBSCHAT, H .
PHYSICAL REVIEW LETTERS, 1990, 65 (20) :2551-2554
[9]  
Herman M.R., 1983, ASTERISQUE, V1, P103
[10]   FRACTAL BOUNDARY FOR THE EXISTENCE OF INVARIANT CIRCLES FOR AREA-PRESERVING MAPS - OBSERVATIONS AND RENORMALIZATION EXPLANATION [J].
KETOJA, JA ;
MACKAY, RS .
PHYSICA D, 1989, 35 (03) :318-334