DIVIDE-AND-CONQUER ALGORITHMS FOR THE BANDSYMMETRIC EIGENVALUE PROBLEM

被引:20
作者
ARBENZ, P
机构
[1] ETH Zentrum, Institut für Wissenschaftliches Rechnen
关键词
EIGENVALUE PROBLEM; SYMMETRICAL BAND MATRIX; DIVIDE AND CONQUER ALGORITHM;
D O I
10.1016/0167-8191(92)90059-G
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Divide and conquer algorithms are formulated for the solution of the eigenvalue Problem for symmetric band matrices. The new algorithms are compared to the traditional solution paths offered by EISPACK, tridiagonalization of the band matrix followed by the tridiagonal QR algorithm.
引用
收藏
页码:1105 / 1128
页数:24
相关论文
共 35 条
[1]   RESTRICTED RANK MODIFICATION OF THE SYMMETRIC EIGENVALUE PROBLEM - THEORETICAL CONSIDERATIONS [J].
ARBENZ, P ;
GANDER, W ;
GOLUB, GH .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1988, 104 :75-95
[2]   ON THE SPECTRAL DECOMPOSITION OF HERMITIAN MATRICES MODIFIED BY LOW RANK PERTURBATIONS WITH APPLICATIONS [J].
ARBENZ, P ;
GOLUB, GH .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1988, 9 (01) :40-58
[3]   COMPUTING EIGENVALUES OF BANDED SYMMETRICAL TOEPLITZ MATRICES [J].
ARBENZ, P .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1991, 12 (04) :743-754
[4]  
Bai Z., 1989, International Journal of High Speed Computing, V1, P97, DOI 10.1142/S0129053389000068
[5]   AN EXTENSION OF ARONSZAJN RULE - SLICING THE SPECTRUM FOR INTERMEDIATE PROBLEMS [J].
BEATTIE, C .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1987, 24 (04) :828-843
[6]   SCHUR COMPLEMENTS AND THE WEINSTEIN-ARONSZAJN THEORY FOR MODIFIED MATRIX EIGENVALUE PROBLEMS [J].
BEATTIE, C ;
FOX, DW .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1988, 108 :37-61
[7]  
BEATTIE C, 1991, 5TH P SIAM C PAR PRO
[8]  
Brent R. P., 1973, ALGORITHMS MINIMIZAT
[9]   RANK-ONE MODIFICATION OF SYMMETRIC EIGENPROBLEM [J].
BUNCH, JR ;
NIELSEN, CP ;
SORENSEN, DC .
NUMERISCHE MATHEMATIK, 1978, 31 (01) :31-48
[10]  
CAMPBELL SL, 1979, GENERALIZED INVERSES