ENTROPY IN THE RUSSO-SUSSKIND-THORLACIUS MODEL

被引:23
作者
HAYWARD, JD
机构
[1] Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 9EW, Silver Street
关键词
D O I
10.1103/PhysRevD.52.2239
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The RST model is given a boundary term and a Z field so that it is well posed and local. The Euclidean method is described for a general theory and used to calculate the RST intrinsic entropy. The evolution of this entropy for the shock wave solutions is found and it obeys a second law.
引用
收藏
页码:2239 / 2244
页数:6
相关论文
共 24 条
  • [1] BANKS T, UNPUB LECTURES BLACK
  • [2] BEKENSTEIN J, 1995, GENERAL RELATIVITY
  • [3] BEKENSTEIN J, 1972, PHYS REV D, V6, P2333
  • [4] HOW FAST DOES INFORMATION LEAK OUT FROM A BLACK-HOLE
    BEKENSTEIN, JD
    [J]. PHYSICAL REVIEW LETTERS, 1993, 70 (24) : 3680 - 3683
  • [5] BEKENSTEIN JD, GRQC9409015 REP
  • [6] EVANESCENT BLACK-HOLES
    CALLAN, CG
    GIDDINGS, SB
    HARVEY, JA
    STROMINGER, A
    [J]. PHYSICAL REVIEW D, 1992, 45 (04) : R1005 - R1009
  • [7] BLACK-HOLE THERMODYNAMICS AND INFORMATION LOSS IN 2 DIMENSIONS
    FIOLA, TM
    PRESKILL, J
    STROMINGER, A
    TRIVEDI, SP
    [J]. PHYSICAL REVIEW D, 1994, 50 (06): : 3987 - 4014
  • [8] ACTION INTEGRALS AND PARTITION-FUNCTIONS IN QUANTUM GRAVITY
    GIBBONS, GW
    HAWKING, SW
    [J]. PHYSICAL REVIEW D, 1977, 15 (10): : 2752 - 2756
  • [9] GIDDINGS SB, 1993, STRING QUANTUM GRAVI
  • [10] GIDDINGS SB, 1994 TRIEST SUMM SCH