数值天气预报模式对雅砻江下游强降水预报能力检验研究(英文)附视频

被引:5
作者
Mingxiang YANG [1 ,2 ]
Yunzhong JIANG [2 ]
Xing LU [3 ]
Hongli ZHAO [2 ]
Yuntao YE [2 ]
Yu TIAN [2 ]
机构
[1] Department of Hydraulic Engineering, Tsinghua University
[2] State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin,China Institute of Water Resources and Hydropower Research
[3] China Eastern Route Corporation of South-to-North Water Diversion
关键词
WRF模式; 雅砻江流域; 降水模拟; 积云对流参数化方案; 云微物理参数化方案;
D O I
暂无
中图分类号
P456.7 [数值预报方法];
学科分类号
0706 ; 070601 ;
摘要
目的:检验数值天气预报模式(WRF)在雅砻江下游对强降水的预报能力,并找出表现最优的参数化方案组合。创新点:首次针对雅砻江流域检验WRF模式对强降水的预报能力,并加入了计算时间作为评价的重要参考。方法:通过三场强降水事件,利用七种常用的云微物理参数化方案(Kessler,Lin et al.(Lin),SingleMoment 3-class(WSM3),Single-Moment 5-class(WSM5),Ferrier,Single-Moment 6-class(WSM6),和New Thompson et al.(NTH))和3种积云对流参数化方案(Kain-Fritsch(KF),Betts-Miller-Janjic(BMJ)和Grell-Devenyi(GD))的组合,对WRF模式在雅砻江下游的降水预报能力进行检验。为了评价WRF模式的预报能力,引入探测率(POD),空报率(FAR),BIAS和公平预报评分(ETS),对比不同方案组合的降水空间分布和站点预报的有效性。同时,均方根误差(RMSE)等指标被用来评价面雨量预报的精确性。除常规评价外,还将计算时间作为方案评价的重要参考,在满足精度需求的前提下优先选择计算效率高的方案组合。结论:1.WRF模式能够适用于雅砻江下游强降水预报;2.WSM3以及GD参数化方案组合的表现最为有效和稳定。
引用
收藏
页码:18 / 37
页数:20
相关论文
共 16 条
[1]  
An improved technique for global daily sunshine duration estimation using satellite imagery[J] Muhammad Ali SHAMIM;Renji REMESAN;Naeem EJAZ;Ayub ELAHI; Journal of Zhejiang University-Science A(Applied Physics & Engineering) 2012, 09
[2]   Study on reservoir operation optimization of Ertan Hydropower Station considering GFS forecasted precipitation [J].
PENG Yong 1 ;
2 Ertan Hydropower Development Co. .
Science China Technological Sciences, 2011, (S1) :76-82
[3]   二滩水电站中长期径流预报研究 [J].
周惠成 ;
张杨 ;
唐国磊 ;
王雅军 ;
蹇德平 .
水电能源科学, 2009, 27 (01) :5-9
[4]   四川省水电资源开发研究 [J].
贾若祥 ;
侯晓丽 ;
刘毅 .
长江流域资源与环境, 2004, (05) :438-443
[5]  
Impact of cloud microphysics and cumulus parameterization on simulation of heavy rainfall event during 7–9 October 2007 over Bangladesh[J] M MAHBUB ALAM Journal of earth system science 2014,
[6]  
Verification of the WRF model for simulating heavy precipitation in Alberta[J] Clark Pennelly;Gerhard Reuter;Thomas Flesch Atmospheric Research 2014,
[7]  
Multi-Physics ensemble prediction of tropical cyclone movement over Bay of Bengal[J] Dodla Venkata Bhaskar Rao;Desamsetti Srinivas Natural Hazards 2014,
[8]  
Numerical simulation of severe local storms over east India using WRF-NMM mesoscale model[J] A.J. Litta;U.C. Mohanty;Someshwar Das;Sumam Mary Idicula Atmospheric Research 2012,
[9]  
Sensitivity of tropical cyclone Jal simulations to physics parameterizations[J] R CHANDRASEKAR;C BALAJI Journal of earth system science 2012,
[10]  
Uncertainty in prediction of deep moist convective processes: Turbulence parameterizations; microphysics and grid-scale effects[J] E. Fiori;A. Parodi;F. Siccardi Atmospheric Research 2010,