辉石岩:高压结晶还是再循环洋壳?附视频

被引:7
作者
张亚玲 [1 ,2 ]
徐义刚 [1 ]
机构
[1] 同位素地球化学国家重点实验室中国科学院广州地球化学研究所
[2] 中国科学院研究生院
关键词
辉石岩; 高压结晶; 循环洋壳; 交代作用; 鉴别标;
D O I
10.16108/j.issn1006-7493.2012.01.009
中图分类号
P588.125 [];
学科分类号
070901 ;
摘要
辉石岩有三种不同的成因:(1)堆晶成因(Ⅰ类辉石岩);(2)再循环洋壳变质成因(Ⅱ类辉石岩);(3)交代成因。I类辉石岩由橄榄岩部分熔融产生的熔体在岩浆通道内上升过程中,在1.5~2.5GPa压力范围内结晶形成。常具有堆晶结构或火成结构,在CaO/MgO-SiO2/MgO图解中无明显的线性关系,无Eu异常,其Sr-Nd-O同位素组成与幔源岩浆相似。II类辉石岩多数为再循环洋壳的变质产物,常具变晶结构,在CaO/MgO-SiO2/MgO图解中形成明显的线性关系,具Eu正异常,其εNd值与MORB相似,而Sr同位素比值变化范围大;其O同位素组成与原岩有关,如原岩是洋壳下部,δ18O<地幔值;如原岩是洋壳上部,则δ18O>地幔值。交代成因辉石岩是熔体-橄榄岩相互反应的结果,常被方辉橄榄岩或纯橄岩包围,矿物种类相对其他两类辉石岩单一,在CaO/MgO-SiO2/MgO图解中较分散,其εNd值较II类辉石岩低,而Sr同位素比值变化较小,δ18O值低于、高于、近似于地幔值都存在。再循环洋壳在俯冲到地幔深部和随超基性岩体上升的过程中由流体萃取作用和部分熔融作用形成化学成分丰富的流体和熔体,这些熔/流体或交代围岩橄榄岩将其转化为辉石岩,或直接高压结晶形成辉石岩,或者由洋壳变质形成的榴辉岩经退变质形成Ⅱ类辉石岩。上述过程导致了在同一超基性岩体中各类成分、成因不同辉石岩共存的现象。
引用
收藏
页码:74 / 87
页数:14
相关论文
共 33 条
[1]  
Remnants of oceanic lower crust in the subcontinental lithospheric mantle: Trace element and Sr–Nd–O isotope evidence from aluminous garnet pyroxenite xenoliths from Jiaohe, Northeast China[J] . Song-Yue Yu,Yi-Gang Xu,Jin-Long Ma,Yong-Fei Zheng,Yong-Sheng Kuang,Lu-Bing Hong,Wen-Chun Ge,Lai-Xi Tong.Earth and Planetary Science Letters . 2010 (3)
[2]  
Origin and significance of spinel and garnet pyroxenites in the shallow lithospheric mantle: Ultramafic massifs in orogenic belts in Western Europe and NW Africa[J] . H. Downes.LITHOS . 2007 (1)
[3]  
Origin of eclogite and garnet pyroxenite from the Moldanubian Zone of the Bohemian Massif, Czech Republic and its implication to other mafic layers embedded in orogenic peridotites[J] . M. Obata,T. Hirajima,M. Svojtka.Mineralogy and Petrology . 2006 (1)
[4]  
Melt–peridotite interactions: Links between garnet pyroxenite and high-Mg# signature of continental crust[J] . Yongsheng Liu,Shan Gao,Cin-Ty Aeolus Lee,Shenghong Hu,Xiaoming Liu,Honglin Yuan.Earth and Planetary Science Letters . 2005 (1)
[5]  
Trace element geochemistry of coesite-bearing eclogites from the Roberts Victor kimberlite, Kaapvaal craton[J] . D.E. Jacob,B. Schmickler,D.J. Schulze.LITHOS . 2003 (2)
[6]   Closed-system geochemical recycling of crustal materials in alpine-type peridotite [J].
Morishita, T ;
Arai, S ;
Gervilla, F ;
Green, DH .
GEOCHIMICA ET COSMOCHIMICA ACTA, 2003, 67 (02) :303-310
[7]  
Geochemistry of xenolithic eclogites from West Africa, part 2: origins of the high MgO eclogites[J] . Matthias G Barth,Roberta L Rudnick,Ingo Horn,William F McDonough,Michael J Spicuzza,John W Valley,Stephen E Haggerty.Geochimica et Cosmochimica Acta . 2002 (24)
[8]  
Evidence for crustal components in the mantle and constraints on crustal recycling mechanisms: pyroxenite xenoliths from Hannuoba, North China[J] . Yigang Xu.Chemical Geology . 2002 (2)
[9]  
High-pressure aluminous mafic rocks from the Ronda peridotite massif, southern Spain: significance of sapphirine- and corundum-bearing mineral assemblages[J] . Tomoaki Morishita,Shoji Arai,Fernando Gervilla.LITHOS . 2001 (2)
[10]  
Mesozoic formation of pyroxenites and gabbros in the Ronda area (southern Spain), followed by Early Miocene subduction metamorphism and emplacement into the middle crust: U–Pb sensitive high-resolution ion microprobe dating of zircon[J] . Tectonophysics . 2000 (1)