Matminer: An open source toolkit for materials data mining

被引:641
作者
Ward, Logan [1 ,2 ]
Dunn, Alexander [3 ,4 ]
Faghaninia, Alireza [3 ]
Zimmermann, Nils E. R. [3 ]
Bajaj, Saurabh [3 ,5 ]
Wang, Qi [3 ]
Montoya, Joseph [3 ]
Chen, Jiming [6 ]
Bystrom, Kyle [4 ]
Dylla, Maxwell [7 ]
Chard, Kyle [1 ,2 ]
Asta, Mark [4 ]
Persson, Kristin A. [3 ]
Snyder, G. Jeffrey [7 ]
Foster, Ian [1 ,2 ]
Jain, Anubhav [3 ]
机构
[1] Univ Chicago, Computat Inst, Chicago, IL 60637 USA
[2] Argonne Natl Lab, Data Sci & Learning Div, Argonne, IL 60439 USA
[3] Lawrence Berkeley Natl Lab, Energy Technol Area, 1 Cyclotron Rd, Berkeley, CA 94720 USA
[4] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA
[5] Citrine Informat, Redwood City, CA 94063 USA
[6] Univ Illinois, Dept Chem Engn, Urbana, IL 61801 USA
[7] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA
基金
美国国家科学基金会;
关键词
Data mining; Open source software; Machine learning; Materials informatics; MATERIALS SCIENCE; POTENTIALS; PREDICTION; INTERFACE; PLATFORM; SEARCH; DESIGN; !text type='PYTHON']PYTHON[!/text; ENERGY; MODEL;
D O I
10.1016/j.commatsci.2018.05.018
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
As materials data sets grow in size and scope, the role of data mining and statistical learning methods to analyze these materials data sets and build predictive models is becoming more important. This manuscript introduces matminer, an open-source, Python-based software platform to facilitate data-driven methods of analyzing and predicting materials properties. Matminer provides modules for retrieving large data sets from external databases such as the Materials Project, Citrination, Materials Data Facility, and Materials Platform for Data Science. It also provides implementations for an extensive library of feature extraction routines developed by the materials community, with 47 featurization classes that can generate thousands of individual descriptors and combine them into mathematical functions. Finally, matminer provides a visualization module for producing interactive, shareable plots. These functions are designed in a way that integrates closely with machine learning and data analysis packages already developed and in use by the Python data science community. We explain the structure and logic of matminer, provide a description of its various modules, and showcase several examples of how matminer can be used to collect data, reproduce data mining studies reported in the literature, and test new methodologies.
引用
收藏
页码:60 / 69
页数:10
相关论文
共 81 条
[1]  
[Anonymous], 2009, SPATIAL TESSELATIONS
[2]  
[Anonymous], PYMKS MAT KNOWLEDGE
[3]  
[Anonymous], 2018, MATER TODAY, DOI DOI 10.1016/j.mattod.2017.11.021
[4]  
[Anonymous], ARXIV171110744V1
[5]  
[Anonymous], PHYS REV B
[6]   High-throughput computational design of cathode coatings for Li-ion batteries [J].
Aykol, Muratahan ;
Kim, Soo ;
Hegde, Vinay I. ;
Snydacker, David ;
Lu, Zhi ;
Hao, Shiqiang ;
Kirklin, Scott ;
Morgan, Dane ;
Wolverton, C. .
NATURE COMMUNICATIONS, 2016, 7
[7]   Atom-centered symmetry functions for constructing high-dimensional neural network potentials [J].
Behler, Joerg .
JOURNAL OF CHEMICAL PHYSICS, 2011, 134 (07)
[8]   The Materials Data Facility: Data Services to Advance Materials Science Research [J].
Blaiszik, B. ;
Chard, K. ;
Pruyne, J. ;
Ananthakrishnan, R. ;
Tuecke, S. ;
Foster, I. .
JOM, 2016, 68 (08) :2045-2052
[9]   Learning scheme to predict atomic forces and accelerate materials simulations [J].
Botu, V. ;
Ramprasad, R. .
PHYSICAL REVIEW B, 2015, 92 (09)
[10]   Data-Driven Model for Estimation of Friction Coefficient Via Informatics Methods [J].
Bucholz, Eric W. ;
Kong, Chang Sun ;
Marchman, Kellon R. ;
Sawyer, W. Gregory ;
Phillpot, Simon R. ;
Sinnott, Susan B. ;
Rajan, Krishna .
TRIBOLOGY LETTERS, 2012, 47 (02) :211-221