Thermal conductivity reduction through isotope substitution in nanomaterials: predictions from an analytical classical model and nonequilibrium molecular dynamics simulations

被引:47
作者
Balasubramanian, Ganesh [1 ]
Puri, Ishwar K. [1 ]
Boehm, Michael C. [2 ]
Leroy, Frederic [2 ]
机构
[1] Virginia Tech, Dept Engn Sci & Mech, Blacksburg, VA 24061 USA
[2] Tech Univ Darmstadt, Eduard Zintl Inst Anorgan & Phys Chem, D-64287 Darmstadt, Germany
关键词
EFFICIENT THERMOELECTRIC-MATERIAL; WALLED CARBON NANOTUBES; SILICON NANOWIRES; SCATTERING; HYDROCARBONS; TEMPERATURES; RESISTANCE; LENGTH; HEAT; SI;
D O I
10.1039/c1nr10421g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We introduce an analytical model to rapidly determine the thermal conductivity reduction due to mass disorder in nanomaterials. Although this simplified classical model depends only on the masses of the different atoms, it adequately describes the changes in thermal transport as the concentrations of these atoms vary. Its predictions compare satisfactorily with nonequilibrium molecular dynamics simulations of the thermal conductivity of C-14-C-12 carbon nanotubes as well as with previous simulations of other materials. We present it as a simple tool to quantitatively estimate the thermal conductivity decrease that is induced by isotope substitution in various materials.
引用
收藏
页码:3714 / 3720
页数:7
相关论文
共 54 条
[1]   Correlation between Thermal Conductivity and Bond Length Alternation in Carbon Nanotubes: A Combined Reverse Nonequilibrium Molecular Dynamics-Crystal Orbital Analysis [J].
Alaghemandi, Mohammad ;
Schulte, Joachim ;
Leroy, Frederic ;
Mueller-Plathe, Florian ;
Boehm, Michael C. .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2011, 32 (01) :121-133
[2]   The thermal conductivity and thermal rectification of carbon nanotubes studied using reverse non-equilibrium molecular dynamics simulations [J].
Alaghemandi, Mohammad ;
Algaer, Elena ;
Boehm, Michael C. ;
Mueller-Plathe, Florian .
NANOTECHNOLOGY, 2009, 20 (11)
[3]   THERMAL-DIFFUSIVITY OF ISOTOPICALLY ENRICHED C-12 DIAMOND [J].
ANTHONY, TR ;
BANHOLZER, WF ;
FLEISCHER, JF ;
WEI, LH ;
KUO, PK ;
THOMAS, RL ;
PRYOR, RW .
PHYSICAL REVIEW B, 1990, 42 (02) :1104-1111
[4]  
Ashcroft N., 2011, Solid State Physics
[5]   Silicon nanowires as efficient thermoelectric materials [J].
Boukai, Akram I. ;
Bunimovich, Yuri ;
Tahir-Kheli, Jamil ;
Yu, Jen-Kan ;
Goddard, William A., III ;
Heath, James R. .
NATURE, 2008, 451 (7175) :168-171
[6]   A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons [J].
Brenner, DW ;
Shenderova, OA ;
Harrison, JA ;
Stuart, SJ ;
Ni, B ;
Sinnott, SB .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2002, 14 (04) :783-802
[7]   Thermal conductivity of isotopically pure and Ge-doped Si epitaxial layers from 300 to 550 K [J].
Cahill, DG ;
Watanabe, F .
PHYSICAL REVIEW B, 2004, 70 (23) :1-3
[8]   MODEL FOR LATTICE THERMAL CONDUCTIVITY AT LOW TEMPERATURES [J].
CALLAWAY, J .
PHYSICAL REVIEW, 1959, 113 (04) :1046-1051
[9]   Isotope effect on the thermal conductivity of boron nitride nanotubes [J].
Chang, C. W. ;
Fennimore, A. M. ;
Afanasiev, A. ;
Okawa, D. ;
Ikuno, T. ;
Garcia, H. ;
Li, Deyu ;
Majumdar, A. ;
Zettl, A. .
PHYSICAL REVIEW LETTERS, 2006, 97 (08)
[10]   An analytical model for the thermal conductivity of silicon nanostructures [J].
Chantrenne, P ;
Barrat, JL ;
Blase, X ;
Gale, JD .
JOURNAL OF APPLIED PHYSICS, 2005, 97 (10)