Explainable AI

被引:13
作者
Matsuo T. [1 ]
Todoriki M. [1 ]
Tago S.-I. [2 ]
机构
[1] Fujitsu Laboratories Ltd., Kawasaki
[2] Fujitsu Laboratories Ltd., Fujitsu Limited, Kawasaki
来源
Kyokai Joho Imeji Zasshi/Journal of the Institute of Image Information and Television Engineers | 2020年 / 74卷 / 01期
关键词
D O I
10.3169/ITEJ.74.30
中图分类号
学科分类号
摘要
[No abstract available]
引用
收藏
页码:30 / 34
页数:4
相关论文
共 9 条
[1]  
Russakovsky O., Et al., ImageNet Large Scale Visual Recognition Challenge, International Journal of Computer Vision, 115, 3, pp. 211-252, (2015)
[2]  
Ethics guidelines for trustworthy AI
[3]  
Guidotti R., Et al., A Survey of Methods for Explaining Black Box Models, ACM Computing Surveys, 51, 5, pp. 1-42
[4]  
Maruhashi K., Et al., Learning Multi-Way Relations via Tensor Decomposition with Neural Networks, Proceedings of Thirty-Second AAAI Conference on Artificial Intelligence, (2018)
[5]  
Ribeiro M.T., Et al., Why Should I Trust You?: Explaining the Predictions of Any Classifier, Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135-1144, (2016)
[6]  
Linked Open Vocabularies
[7]  
MED2RDF
[8]  
Visual Genome
[9]  
Dornadula A., Et al., Visual Relationships as Functions: Enabling Few-Shot Scene Graph Prediction, (2019)