Lyapunov exponents and transport in the Zhang model of self-organized criticality
被引:15
作者:
Cessac, B.
论文数: 0引用数: 0
h-index: 0
机构:
Institut Non Linéaire de Nice, 1361 Route des Lucioles, 06560 Valbonne, FranceInstitut Non Linéaire de Nice, 1361 Route des Lucioles, 06560 Valbonne, France
Cessac, B.
[1
]
Blanchard, P.
论文数: 0引用数: 0
h-index: 0
机构:
Institut Non Linéaire de Nice, 1361 Route des Lucioles, 06560 Valbonne, FranceInstitut Non Linéaire de Nice, 1361 Route des Lucioles, 06560 Valbonne, France
Blanchard, P.
[1
]
Krüger, T.
论文数: 0引用数: 0
h-index: 0
机构:
Institut Non Linéaire de Nice, 1361 Route des Lucioles, 06560 Valbonne, FranceInstitut Non Linéaire de Nice, 1361 Route des Lucioles, 06560 Valbonne, France
Krüger, T.
[1
]
机构:
[1] Institut Non Linéaire de Nice, 1361 Route des Lucioles, 06560 Valbonne, France
来源:
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
|
2001年
/
64卷
/
1 II期
关键词:
Computer simulation - Energy transfer - Laplace transforms - Lyapunov methods - Matrix algebra - Probability distributions - Random processes - Relaxation processes - Thermodynamics;
D O I:
10.1103/PhysRevE.64.016133
中图分类号:
学科分类号:
摘要:
The dynamics of Zhang's model were studied in terms of the Lyapunov exponents and Oseledec modes. Due to the piecewise affine structure of the model, the Lyapunov exponents also appeared as characteristic rates of energy transport in the system. It was demonstrated that the spectrum is roughly divided into two parts: slow modes, and fast modes.