Robust H∞ control for Markovian jump nonlinear systems

被引:10
作者
Aliyu, M.D.S. [1 ]
Boukas, E.K. [2 ]
机构
[1] Systems Engineering Department, King Fahd Univ. Petrol. and Minerals
[2] Mechanical Engineering Department, Ecl. Polytech. de Montréal, Montréal, Qué. H3C 3A7, P.O. Box 6079, stn. 'Center-ville'
基金
加拿大自然科学与工程研究理事会;
关键词
E. K. B. was supported by the Natural Sciences and Engineering Research Council of Canada under grants OGP0036444;
D O I
10.1093/imamci/17.3.295
中图分类号
学科分类号
摘要
This paper deals with the robust H∞ control problem of uncertain nonlinear stochastic systems with Markovian jump parameters. We assume that the uncertainties are structured such that suitable bounding functions can be found. A robust controller is then designed that will guarantee disturbance attenuation and asymptotic stability for all admissible uncertainties and L2-bounded disturbances. The solution to the problem is characterized in terms of a set of smooth-positive semidefinite functions satisfying certain Hamilton-Jacobi-Isaac (HJI) inequalities with some appropriate scaling functions. Both the case of matched and unmatched uncertainties are considered.
引用
收藏
页码:295 / 308
页数:13
相关论文
共 21 条
[1]  
Aliyu M.D.S., Boukas E.K., ℋ<sub>∞</sub> control for Markovian jump nonlinear systems, Proc. 37th IEEE Conf. Dec. and Control, pp. 766-771, (1998)
[2]  
Balas G.J., Doyle J.C., Glover K., Packard A., Smith R., Matlab, μ-Analysis and Synthesis Toolbox, (1995)
[3]  
Basar T., Minimax control of switching systems under sampling, Pmc. 33rd IEEE Conf. on Dec. and Control, pp. 716-721, (1994)
[4]  
Boukas E.K., Yang H., Robust stabilization by dynamic combined state and output feedback compensator for nonlinear systems with jumps, JOTA, 92, (1997)
[5]  
De Souza C.E., Fragoso M.D., ℋ<sub>∞</sub> control for linear systems with Markovian jumping parameters, Control Theor. Adv. Techn., 9, pp. 457-466, (1993)
[6]  
Feng X., Loparo K.A., Ji Y., Chizeck H.J., Stochastic stability properties of jump linear systems, IEEE Trans. Automat. Control, 37, (1992)
[7]  
Georgiou T., Smith M.C., Optimal robustness in the gap metric, IEEE Trans. Automat. Control, 35, (1990)
[8]  
Glover K., MacFarlane D., Robust stabilization of normalized coprime factor plant descriptions with ℋ<sub>∞</sub>-bounded uncertainty, IEEE Trans. Automat. Control, 34, pp. 821-830, (1989)
[9]  
Gutman S., Uncertain dynamical systems - A Lyapunov min-max approach, IEEE Trans. Automat. Control, 24, pp. 437-443, (1979)
[10]  
Haddad W.M., Kapila V., Bernstein D.S., Robust ℋ<sub>∞</sub> stabilization via parameterized Lyapunov bounds, IEEE Trans. Automat. Control, 42, pp. 243-248, (1997)