A hybrid evolutionary algorithm based on ACO and SA for cluster analysis

被引:34
作者
Niknam, T. [1 ]
Olamaei, J. [2 ]
Amiri, B. [3 ]
机构
[1] Department of Electronic and Electrical, Shiraz University of Technology, Modars Blvd. Shiraz
[2] Islamic Azad University, South Tehran-Branch, Tehran
[3] Department of Information Technology and Computer Engineering, Fars Science and Research Branch of Islamic Azad University, Shiraz
关键词
Ant colony optimization (ACO); Data clustering; Hybrid evolutionary optimization algorithm; K-means clustering; Simulated annealing (SA);
D O I
10.3923/jas.2008.2695.2702
中图分类号
学科分类号
摘要
This study presents an efficient hybrid evolutionary optimization algorithm based on combining Ant Colony Optimization (ACO) and Simulated Annealing (SA), called ACO-SA, for optimal clustering N object into K clusters. The new ACO-SA algorithm is tested on several data sets and its performance is compared with those of ACO, SA and K-means clustering. The simulation results show that the proposed evolutionary optimization algorithm is robust and suitable for data clustering. © 2008 Asian Network for Scientific Information.
引用
收藏
页码:2695 / 2702
页数:7
相关论文
共 14 条
[1]  
Amir A., Lipika D., A k-mean clustering algorithm for mixed numeric and categorical data, Data Knowledge Eng., 63, pp. 503-527, (2007)
[2]  
Christober C., Rajan A., Mohan M.R., An evolutionary programming based simulated annealing method for solving the unit commitment problem, Int. J. Elect. Power Energy Syst., 29, pp. 540-550, (2007)
[3]  
Dorigo M., Birattari M., Stutzle T., Ant colony optimization, IEEE Comput. Intel. Mag., 1, pp. 28-39, (2006)
[4]  
Fathian M., Amiri B., Maroosi A., Application of honey-bee mating optimization algorithm on clustering, Applied Math. Comput., 190, pp. 1502-1513, (2007)
[5]  
Ho S.L., Shiyou Y., Guangzheng N., Machado J.M., A modified ant colony optimization algorithm modeled on tabu-search methods, IEEE Trans. Magnet., 4, pp. 1195-1198, (2006)
[6]  
Huang S.J., Enhancement of hydroelectric generation scheduling using ant colony system based optimization approaches, IEEE Trans. Energy Convers., 16, pp. 296-301, (2001)
[7]  
Kao Y.T., Erwie Z., Kao I.W., A hybridized approach to data clustering, Expert Syst. Appl., 34, pp. 1754-1762, (2008)
[8]  
Kwang M.S., Sun W.H., Ant colony optimization for routing and load-balancing: Survey and new directions, IEEE Trans. Syst. Man Cybernetics, 33, PART A, pp. 560-572, (2003)
[9]  
Lu J.F., Tang J.B., Tang Z.M., Yang J.Y., Hierarchical initialization approaches for K-Means clustering, Pattern Recogn. Lett, 29, pp. 787-795, (2008)
[10]  
Merkle D., Middendorf M., Schmech H., Ant colony optimization for resource constrained project scheduling, IEEE Trans. Evolut Comput., 6, pp. 333-346, (2002)