Electrical characterization of gel collected from shark electrosensors

被引:36
作者
Brown, Brandon R. [1 ]
Hutchison, John C. [2 ]
Hughes, Mary E. [1 ]
Kellogg, Douglas R. [3 ]
Murray, Royce W. [2 ]
机构
[1] Department of Physics, University of San Francisco, San Francisco, CA 94117
[2] Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290
[3] Department of Biology, University of California, Santa Cruz, CA 95064
来源
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics | 2002年 / 65卷 / 06期
关键词
Biological organs - Detectors - Electrophoresis - Magnetic fields - Permittivity - Proteins - Seawater - Thermal cycling;
D O I
10.1103/PhysRevE.65.061903
中图分类号
学科分类号
摘要
To investigate the physical mechanism of the electric sense, we present an initial electrical characterization of the glycoprotein gel that fills the electrosensitive organs of marine elasmobranchs (sharks, skates, and rays). We have collected samples of this gel, postmortem, from three shark species, and removed the majority of dissolved salts in one sample via dialysis. Here we present the results of dc conductivity measurements, low-frequency impedance spectroscopy, and electrophoresis. Electrophoresis shows a range of large protein-based molecules fitting the expectations of glycoproteins, but the gels of different species exhibit little similarity. The electrophoresis signature is unaffected by thermal cycling and measurement currents. The dc data were collected at various temperatures, and at various electric and magnetic fields, showing consistency with the properties of seawater. The impedance data collected from a dialyzed sample, however, show large values of static permittivity and a loss peak corresponding to an unusually long relaxation time, about 1 ms. The exact role of the gel is still unknown, but our results suggest its bulk properties are well matched to the sensing mechanism, as the minimum response time of an entire electric organ is on the order of 5 ms. © 2002 The American Physical Society.
引用
收藏
页码:1 / 061903
相关论文
empty
未找到相关数据