A snapshot of the frontiers of fairness in machine learning

被引:4
作者
Chouldechova A. [1 ]
Roth A. [2 ]
机构
[1] Heinz College, Carnegie Mellon University, Pittsburgh, PA
[2] Department of Computer and Information Science, University of Pennsylvania, Philadelphia, PA
基金
美国国家科学基金会;
关键词
65;
D O I
10.1145/3376898
中图分类号
学科分类号
摘要
[No abstract available]
引用
收藏
页码:82 / 89
页数:7
相关论文
共 65 条
  • [1] Agarwal A., Beygelzimer A., Dudik M., Langford J., Wallach H., A reductions approach to fair classification, Proceedings of the 35th Intern. Conf. Machine Learning. ICML, Jmlr Workshop and Conference Proceedings, pp. 2569-2577, (2018)
  • [2] Bastani H., Bayati M., Khosravi K., Exploiting the Natural Exploration in Contextual Bandits., (2017)
  • [3] Becker G.S., The Economics of Discrimination., (2010)
  • [4] Berk R., Heidari H., Jabbari S., Kearns M., Roth A., Fairness in criminal justice risk assessments: The state of the art, Sociological Methods & Research, (2018)
  • [5] Beutel A., Chen J., Zhao Z., Chi E.H., Data Decisions and Theoretical Implications When Adversarially Learning Fair Representations., (2017)
  • [6] Bird S., Barocas S., Crawford K., Diaz F., Wallach H., Exploring or exploiting? Social and ethical implications of autonomous experimentation in AI, Proceedings of Workshop on Fairness, Accountability, and Transparency in Machine Learning., (2016)
  • [7] Bolukbasi T., Chang K.-W., Zou J.Y., Saligrama V., Kalai A.T., Man is to computer programmer as woman is to homemaker? Debiasing word embeddings, Advances in Neural Information Processing Systems, pp. 4349-4357, (2016)
  • [8] Bower A., Et al., Fair Pipelines., (2017)
  • [9] Buolamwini J., Gebru T., Gender shades: Intersectional accuracy disparities in commercial gender classification, Proceedings of the Conference on Fairness, Accountability and Transparency., pp. 77-91, (2018)
  • [10] Calders T., Verwer S., Three naive Bayes approaches for discrimination-free classification, Data Mining and Knowledge Discovery, 21, 2, pp. 277-292, (2010)