The BRET technology and its application to screening assays

被引:112
作者
UMR 8090, CNRS, Université Lille 2, 1 rue du Professeur Calmette, 59019 Lille Cedex, France [1 ]
不详 [2 ]
不详 [3 ]
不详 [4 ]
机构
[1] UMR 8090, CNRS, Université Lille 2, 59019 Lille Cedex
[2] CNRS UPS 2682, Protein Phosphorylation and Disease Laboratory, Station Biologique, Roscoff
[3] Institut Cochin, Université Paris Descartes, CNRS UMR 8104, Paris
[4] Inserm U567, Paris
来源
Biotechnol. J. | 2008年 / 3卷 / 311-324期
关键词
Bioluminescence resonance energy transfer; Drug discovery; High throughput screening assays; Protein-protein interaction;
D O I
10.1002/biot.200700222
中图分类号
学科分类号
摘要
The bioluminescence resonance energy transfer (BRET) method is based on resonance energy transfer between a light-emitting enzyme and a fluorescent acceptor. Since its first description in 1999, several versions of BRET have been described using different substrates and energy donor/acceptor couples. Today, BRET is considered as one of the most versatile techniques for studying the dynamics of protein-protein interactions in living cells. Various studies have applied BRET-based assays to screen new receptor ligands and inhibitors of disease-related-proteases. Inhibitors of protein-protein interactions are likely to become a new major class of therapeutic drugs, and BRET technology is expected to play an important role in the identification of such compounds. This review describes the original BRET-based methodology, more recent variants, and potential applications to drug screening. © 2008 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
引用
收藏
页码:311 / 324
页数:13
相关论文
共 135 条
[1]  
Bach S., Knockaert M., Reinhardt J., Lozach O., Et al., Roscovitine targets, protein kinases and pyridoxal kinase, J. Biol. Chem, 280, pp. 31208-31219, (2005)
[2]  
Baines I.C., Colas P., Peptide aptamers as guides for small-molecule drug discovery, Drug Discov. Today, 11, pp. 334-341, (2006)
[3]  
Pagliaro L., Felding J., Audouze K., Nielsen S.J., Et al., Emerging classes of protein-protein interaction inhibitors and new tools for their development, Curr. Opin. Chem. Biol, 8, pp. 442-449, (2004)
[4]  
Fields S., Song O., A novel genetic system to detect protein-protein interactions, Nature, 340, pp. 245-246, (1989)
[5]  
Eyckerman S., Verhee A., der Heyden J.V., Lemmens I., Et al., Design and application of a cytokine-receptor-based interaction trap, Nat. Cell Biol, 3, pp. 1114-1119, (2001)
[6]  
Lemmens I., Lievens S., Eyckerman S., Tavernier J., Reverse MAPPIT detects disruptors of protein-protein interactions in human cells, Nat. Protoc, 1, pp. 92-97, (2006)
[7]  
Eyckerman S., Lemmens I., Catteeuw D., Verhee A., Et al., Reverse MAPPIT: Screening for protein-protein interaction modifiers in mammalian cells, Nat. Methods, 2, pp. 427-433, (2005)
[8]  
Eyckerman S., Lemmens I., Lievens S., Van der Heyden J., Et al., Design and use of a mammalian protein-protein interaction trap (MAPPIT), Sci. STKE, 2002, PL, (2002)
[9]  
Tavernier J., Eyckerman S., Lemmens I., Van der Heyden J., Et al., A cytokine receptor-based two-hybrid method in mammalian cells, Clin. Exp. Allergy, 32, pp. 1397-1404, (2002)
[10]  
Burke T.J., Loniello K.R., Beebe J.A., Ervin K.M., Development and application of fluorescence polarization assays in drug discovery, Comb. Chem. High Throughput Screen, 6, pp. 183-194, (2003)