Three-dimensional imaging in double aberration-corrected scanning confocal electron microscopy, Part II: Inelastic scattering

被引:38
作者
D'Alfonso, A.J. [1 ]
Cosgriff, E.C. [2 ]
Findlay, S.D. [1 ,3 ]
Behan, G. [2 ]
Kirkland, A.I. [2 ]
Nellist, P.D. [2 ]
Allen, L.J. [1 ]
机构
[1] School of Physics, University of Melbourne
[2] Department of Materials, University of Oxford, Oxford
[3] Institute of Engineering Innovation, The University of Tokyo, Tokyo, 113-8656, 2-11-16, Yayoi, Bunkyo
基金
英国工程与自然科学研究理事会; 日本学术振兴会; 澳大利亚研究理事会;
关键词
61.05.jd; 68.37.Ma; 82.80.Pv; Depth sectioning; Electron energy loss spectroscopy; Scanning confocal electron microscopy (SCEM); Scanning transmission electron microscopy (STEM);
D O I
10.1016/j.ultramic.2008.05.007
中图分类号
学科分类号
摘要
The implementation of spherical aberration-corrected pre- and post-specimen lenses in the same instrument has facilitated the creation of sub-Ångstrom electron probes and has made aberration-corrected scanning confocal electron microscopy (SCEM) possible. Further to the discussion of elastic SCEM imaging in our previous paper, we show that by performing a 3D raster scan through a crystalline sample using inelastic SCEM imaging it will be possible to determine the location of isolated impurity atoms embedded within a bulk matrix. In particular, the use of electron energy loss spectroscopy based on inner-shell ionization to uniquely identify these atoms is explored. Comparisons with scanning transmission electron microscopy (STEM) are made showing that SCEM will improve both the lateral and depth resolution relative to STEM. In particular, the expected poor resolution of STEM depth sectioning for extended objects is overcome in the SCEM geometry. © 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:1567 / 1578
页数:11
相关论文
共 31 条
[1]  
Haider M., Uhlemann S., Schwan E., Rose H., Kabius B., Urban K., Nature, 392, (1998)
[2]  
Haider M., Rose H., Uhlemann S., Schwan E., Kabius B., Urban K., Ultramicroscopy, 75, (1998)
[3]  
Nellist P.D., Chisholm M.F., Dellby N., Krivanek O.L., Murfitt M.F., Szilagyi Z.S., Lupini A.R., Borisevich A., Sides Jr. W.H., Pennycook S.J., Science, 305, (2004)
[4]  
Krivanek O.L., Dellby N., Lupini A.R., Ultramicroscopy, 78, (1999)
[5]  
Batson P.E., Dellby N., Krivanek O.L., Nature, 418, (2002)
[6]  
Wang S., Borisevich A.Y., Rashkeev S.N., Glazoff M.V., Sohlberg K., Pennycook S.J., Pantelides S.T., Nat. Mater., 3, (2004)
[7]  
Borisevich A.Y., Lupini A.R., Pennycook S.J., Proc. Natl. Acad. Sci. USA, 103, (2006)
[8]  
van Benthem K., Lupini A.R., Kim M., Baik H.S., Doh S.J., Lee J., Oxley M.P., Findlay S.D., Allen L.J., Luck J.T., Pennycook S.J., Appl. Phys. Lett., 87, (2005)
[9]  
D'Alfonso A.J., Findlay S.D., Oxley M.P., Pennycook S.J., van Benthem K., Allen L.J., Ultramicroscopy, 108, (2007)
[10]  
Nellist P.D., Behan G., Kirkland A.I., Hetherington C.J.D., Appl. Phys. Lett., 89, (2006)