Graph implementations for nonsmooth convex programs

被引:2126
作者
Stanford University, United States [1 ]
机构
来源
Lect. Notes Control Inf. Sci. | 2008年 / 95-110期
关键词
Conic optimization; Convex optimization; Disciplined convex programming; Nondifferentiable functions; Nonsmooth optimization; Optimization modeling languages; Second-order cone programming; Semidefinite programming;
D O I
10.1007/978-1-84800-155-8_7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We describe graph implementations, a generic method for representing a convex function via its epigraph, described in a disciplined convex programming framework. This simple and natural idea allows a very wide variety of smooth and nonsmooth convex programs to be easily specified and efficiently solved, using interior-point methods for smooth or cone convex programs. © 2008 Springer London.
引用
收藏
页码:95 / 110
页数:15
相关论文
共 17 条
[1]  
Alizadeh F., Goldfarb D., Second-order cone programming (January, (2004)
[2]  
Bertsekas D.P., Convex Analysis and Optimization, (2003)
[3]  
Bland R., Goldfarb D., Todd M., The ellipsoid method: A survey, Operations Research, 29, 6, pp. 1039-1091, (1981)
[4]  
Borwein J., Lewis A., Convex Analysis and Nonlinear Optimization: Theory and Examples, (2000)
[5]  
Ben-Tal A., Nemirovski A., Lectures on Modern Convex Optimization: Analysis, Algorithms and Engineering Applications, MPS/SIAM Series on Optimization, (2001)
[6]  
Boyd S., Vandenberghe L., Convex Optimization, (2004)
[7]  
Dantzig G., Linear Programming and Extensions, (1963)
[8]  
Grant M., (2004)
[9]  
Lofberg J., YALMIP: A toolbox for modeling and optimization in MATLAB®, Proceedings of the CACSD Conference, (2004)
[10]  
Lobo M., Vandenberghe L., Boyd S., Lebret H., Applications of second-order cone programming. Linear Algebra and its Applications, 284, pp. 193-228, (1998)