Thermoacoustic molecular imaging of small animals

被引:182
作者
Kruger, Robert A. [1 ]
Kiser, William L. [1 ]
Reinecke, Daniel R. [1 ]
Kruger, Gabe A. [1 ]
Miller, Kathy D. [1 ]
机构
[1] OptoSonics, Inc., Indianapolis, IN 46268, 7210 Georgetown Road
关键词
Flourescence; Optical imaging; Optoacoustics; Photoacoustics; Thermoacoustics;
D O I
10.1162/153535003322331993
中图分类号
学科分类号
摘要
We have designed, constructed, and tested a thermoacoustic computed tomography (TCT) scanner for imaging optical absorption in small animals in three dimensions. The device utilizes pulsed laser irradiation (680-1064 nm) and a unique, 128-element transducer array. We quantified the isotropic spatial resolution of this scanner to be 0.35 mm. We describe a dual-wavelength substraction technique for isolating optical dyes with TCT. Phantom experiments demonstrate that we can detect 5 fmol of a near-infrared dye (indocyanine green, ICG) in a 1-μL volume using dual-wavelength subtraction. Initial TCT imaging in phantoms and in two sacrificed mice suggests that three-dimensional, optical absorption patterns in small animals can be detected with an order of magnitude better spatial resolution and an order of magnitude better low-contrast detectability in small animals when compared to fluorescence imaging or diffusion optical tomography.
引用
收藏
页码:113 / 123
页数:10
相关论文
共 30 条
[1]  
Mahmood U., Weissleder R., Some tools for molecular imaging, Acad Radiol., 9, pp. 629-631, (2002)
[2]  
Blasberg R.G., Tjuvajev J.G., Molecular-genetic imaging: A nuclear medicine-based perspective, J Mol Imaging, 1, pp. 280-300, (2002)
[3]  
Achilefu S., Dorshow R.B., Bugaj J.E., Rajogopalan R., Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging, Invest Radiol., 35, pp. 479-485, (2000)
[4]  
Licha K., Riefke B., Ebert B., Grotzinger C., Cyanine dyes as contrast agents in biomedical optical imaging, Acad Radiol., 9, (2002)
[5]  
Cerussi A.E., Jakubowski D.B., Shah N., Bevilacqua F., Lanning R.M., Berger A.J., Hsiang D., Butler J.A., Holcombe R.F., Tromberg B.J., Spectroscopy enhances the information content of optical mammography, J Biomed Opt., 7, pp. 60-71, (2002)
[6]  
McBride T.O., Pogue B.W., Poplack S.P., Soho S., Wells W.A., Jiang S., Oesterberg U.L., Paulsen K.D., Multispectral near-infrared tomography: A case study in compensating for water and lipid content in hemoglobin imaging of the breast, J Biomed Opt., 7, pp. 72-87, (2002)
[7]  
Mahmood U., Tung C.-H., Bogdanov A., Weissleder R., Near-infrared optical imaging of protease activity for tumor detection, Radiology, 21, pp. 866-870, (1999)
[8]  
Arridge S.R., Van Der Zee P., Cope M., Delpy D.T., Reconstruction methods for infrared absorption imaging, Proc SPIE, 1431, pp. 204-215, (1991)
[9]  
Jiang H., Paulsen K.D., Osterberg U.L., Pogue B.W., Patterson M.S., Optical image reconstruction using frequency-domain data: Simulations and experiments, J Opt Soc Am A, 13, pp. 253-266, (1996)
[10]  
Arridge S.R., Optical tomography in medical imaging, Inverse Probl., 15, (1999)