Conditional stability in determining a heat source

被引:10
作者
Choulli, M. [1 ]
Yamamoto, M. [2 ]
机构
[1] Department of Mathematics, Université de Metz
[2] Department of Mathematical Sciences, University of Tokyo, Meguro, Tokyo 153
来源
Journal of Inverse and Ill-Posed Problems | 2004年 / 12卷 / 03期
关键词
D O I
10.1515/1569394042215856
中图分类号
学科分类号
摘要
We establish the uniqueness and conditional stability in determining a heat source term from boundary measurements which are started after some time. The key is analyticity of solutions in the time and we apply the maximum principle for analytic functions. © VSP 2004.
引用
收藏
页码:233 / 243
页数:10
相关论文
共 13 条
  • [1] Adams R.A., Sobolev Spaces, (1975)
  • [2] Cannon J.R., Determination of an unknown heat source from overspecified boundary data, SIAM J. Numer. Anal., 5, pp. 275-286, (1968)
  • [3] Cannon J.R., The One-dimensional Heat Equation, (1984)
  • [4] Fujiwara D., Concrete characterization of the domains of fractional powers of some elliptic differential operators of the second order, Proc. Japan Acad., 43, pp. 82-86, (1967)
  • [5] Hayden T.L., Massey III F.J., Nonlinear holomorphic semigroups, Pacific J. Math., 57, pp. 423-439, (1975)
  • [6] Lavrentiev M.M., Romanov V.G., Vasiliev V.G., Multidimensional Inverse Problems for Differential Equations, Lecture Notes in Mathematics, 167, (1970)
  • [7] Lions J.L., Magenes E., Non-Homogeneous Boundary Value Problems and Applications, (1972)
  • [8] Mizohata S., Unicité du prolongement des solutions pour quelques opérateurs différentiels paraboliques, Memoirs of the College of Science, Univ. of Kyoto, Series A, 31, pp. 219-239, (1958)
  • [9] Mizohata S., The Theory of Partial Differential Equations, (1973)
  • [10] Pazy A., Semigroups of Linear Operators and Applications to Partial Differential Equations, (1983)