METASTABLE BEHAVIOR OF INFREQUENTLY OBSERVED, WEAKLY RANDOM, ONE-DIMENSIONAL DIFFUSION PROCESSES.

被引:33
作者
Kipnis, C. [1 ]
Newman, C.M. [1 ]
机构
[1] Ecole Polytechnique, Cent de, Mathematiques Appliquees, Palaiseau,, Fr, Ecole Polytechnique, Cent de Mathematiques Appliquees, Palaiseau, Fr
关键词
MATHEMATICAL TECHNIQUES - Differential Equations;
D O I
10.1137/0145059
中图分类号
学科分类号
摘要
Consider the one-dimensional diffusion process X//t satisfying dX//t equals epsilon **1**/**2 dW//t minus G prime (X//t) dt where W//t is the standard Wiener process. For suitable G's with a double well (at m and M) shape and G(m) greater than G(M) and for an appropriate choice of lambda // epsilon , the scaled process X// lambda //(// epsilon //)//t, converges as epsilon approaches 0 (in an appropriate sense) to the two-state (m and M) jump process with M an absorbing state and transitions from m to M at unit rate.
引用
收藏
页码:972 / 982
相关论文
empty
未找到相关数据