Mitogen-activated protein kinases interacting kinases are autoinhibited by a reprogrammed activation segment

被引:61
作者
Ralf Jauch [6 ]
Min‐Kyu Cho [1 ]
Stefan Jäkel [2 ]
Catharina Netter [3 ]
Kay Schreiter [4 ]
Babette Aicher [5 ]
Markus Zweckstetter [4 ]
Herbert Jäckle [4 ]
Markus C Wahl [3 ]
机构
[1] Max-Planck-Institut für Biophysikalische Chemie, Abteilung Molekulare Entwicklungsbiologie, Göttingen
[2] Genome Institute of Singapore, Laboratory for Structural Biochemistry, Singapore
[3] Max-Planck-Institut für Biophysikalische Chemie, NMR-Basierte Strukturbiologie, Göttingen
[4] DeveloGen AG, Göttingen
[5] Max-Planck-Institut für Biophysikalische Chemie, Abteilung Zelluläre Biochemie/Röntgenkristallographie, Göttingen
[6] Genome Institute of Singapore, Singapore 138672
[7] Max-Planck-Institut für Biophysikalische Chemie, Abteilung Zelluläre Biochemie/Röntgenkristallographie, 37077 Göttingen
关键词
Autoinhibition; Drug design; Mitogen-activated protein kinases interacting kinase; Mnk1 and Mnk2; Protein kinase regulation;
D O I
10.1038/sj.emboj.7601285
中图分类号
学科分类号
摘要
Autoinhibition is a recurring mode of protein kinase regulation and can be based on diverse molecular mechanisms. Here, we show by crystal structure analysis, nuclear magnetic resonance (NMR)-based nucleotide affinity studies and rational mutagenesis that nonphosphorylated mitogen-activated protein (MAP) kinases interacting kinase (Mnk) 1 is autoinhibited by conversion of the activation segment into an autoinhibitory module. In a Mnk1 crystal structure, the activation segment is repositioned via a Mnk-specific sequence insertion at the N-terminal lobe with the following consequences: (i) the peptide substrate binding site is deconstructed, (ii) the interlobal cleft is narrowed, (iii) an essential Lys-Glu pair is disrupted and (iv) the magnesium-binding loop is locked into an ATP-competitive conformation. Consistently, deletion of the Mnk-specific insertion or removal of a conserved phenylalanine side chain, which induces a blockade of the ATP pocket, increase the ATP affinity of Mnk1. Structural rearrangements required for the activation of Mnks are apparent from the cocrystal structure of a Mnk2D228G-staurosporine complex and can be modeled on the basis of crystal packing interactions. Our data suggest a novel regulatory mechanism specific for the Mnk subfamily. © 2006 European Molecular Biology Organization. All Rights Reserved.
引用
收藏
页码:4020 / 4032
页数:12
相关论文
共 52 条
[1]  
Adams J.A., Kinetic and catalytic mechanisms of protein kinases, Chem Rev, 101, pp. 2271-2290, (2001)
[2]  
Brunger A.T., Adams P.D., Clore G.M., DeLano W.L., Gros P., Grosse-Kunstleve R.W., Jiang J.S., Kuszewski J., Nilges M., Pannu N.S., Read R.J., Rice L.M., Simonson T., Warren G.L., Crystallography & NMR system: A new software suite for macromolecular structure determination, Acta Crystallogr D, 54, pp. 905-921, (1998)
[3]  
Buxade M., Parra J.L., Rousseau S., Shpiro N., Marquez R., Morrice N., Bain J., Espel E., Proud C.G., The Mnks are novel components in the control of TNFalpha biosynthesis and phosphorylate and regulate hnRNP A1, Immunity, 23, pp. 177-189, (2005)
[4]  
Canagarajah B.J., Khokhlatchev A., Cobb M.H., Goldsmith E.J., Activation mechanism of the MAP kinase ERK2 by dual phosphorylation, Cell, 90, pp. 859-869, (1997)
[5]  
The CCP4 Suite: Programs for protein crystallography, Acta Crystallogr D, 50, pp. 760-763, (1994)
[6]  
Dar A.C., Dever T.E., Sicheri F., Higher-order substrate recognition of eIF2alpha by the RNA-dependent protein kinase PKR, Cell, 122, pp. 887-900, (2005)
[7]  
Emsley P., Cowtan K., Coot: Model-building tools for molecular graphics, Acta Crystallogr D, 60, pp. 2126-2132, (2004)
[8]  
Flocco M.M., Mowbray S.L., Strange bedfellows: Interactions between acidic side-chains in proteins, J Mol Biol, 254, pp. 96-105, (1995)
[9]  
Fukunaga R., Hunter T., MNK1, a new MAP kinase-activated protein kinase, isolated by a novel expression screening method for identifying protein kinase substrates, EMBO J, 16, pp. 1921-1933, (1997)
[10]  
Goldberg J., Nairn A.C., Kuriyan J., Structural basis for the autoinhibition of calcium/calmodulin-dependent protein kinase I, Cell, 84, pp. 875-887, (1996)