The murine SNF5/INI1 chromatin remodeling factor is essential for embryonic development and tumor suppression

被引:319
作者
Agnes Klochendler‐Yeivin [1 ]
Laurence Fiette [2 ]
Jaqueline Barra [3 ]
Christian Muchardt [1 ]
Charles Babinet [3 ]
Moshe Yaniv [1 ]
机构
[1] U.́ des Virus Oncogènes, CNRS URA 1644, Institut Pasteur, 75724 Paris Cedex 15
[2] Unité d'Histopathologie, Institut Pasteur, 75724 Paris Cedex 15
[3] U.́ de Biol. du Devmt., CNRS URA 1960, Institut Pasteur, 75724 Paris Cedex 15
关键词
D O I
10.1093/embo-reports/kvd129
中图分类号
学科分类号
摘要
The assembly of eukaryotic DNA into nucleosomes and derived higher order structures constitutes a barrier for transcription, replication and repair. A number of chromatin remodeling complexes, as well as histone acetylation, were shown to facilitate gene activation. To investigate the function of two closely related mammalian SWI/SNF complexes in vivo, we inactivated the murine SNF5/INI1 gene, a common subunit of these two complexes. Mice lacking SNF5 protein stop developing at the peri-implantation stage, showing that the SWI/SNF complex is essential for early development and viability of early embryonic cells. Furthermore, heterozygous mice develop nervous system and soft tissue sarcomas. In these tumors the wild-type allele was lost, providing further evidence that SNF5 functions as a tumor suppressor gene in certain cell types.
引用
收藏
页码:500 / 506
页数:6
相关论文
共 31 条
  • [1] Bultman S., Yee D., La Mantia C., Nicholson J., Gilliam A., Randazzo F., Chambon P., Crabtree G., Magnuson T., A Brg1 null mutation in the mouse reveals functional differences among mammalian SWI/SNF complexes, Mol. Cell, (2000)
  • [2] Carlson M., Laurent B.C., The SWI/SNF family of global transcriptional activators, Curr. Opin. Cell Biol., 6, pp. 396-402, (1994)
  • [3] Dunaief J.L., Strober B.E., Guha S., Khavari P.A., Alin K., Luban J., Begemann M., Crabtree G.R., Goff S.P., The retinoblastoma protein and BRG1 form a complex and cooperate to induce cell cycle arrest, Cell, 79, pp. 119-130, (1994)
  • [4] Goodman R.H., Smolik S., CBP/p300 in cell growth, transformation, and development, Genes Dev., 14, pp. 1553-1577, (2000)
  • [5] Hogan B., Beddington R., Costantini F., Lacy E., Manipulating the Mouse Embryo. A Laboratory Manual, (1994)
  • [6] Holstege F.C., Jennings E.G., Wyrick J.J., Lee T.I., Hengartner C.J., Green M.R., Golub T.R., Lander E.S., Young R.A., Dissecting the regulatory circuitry of a eukaryotic genome, Cell, 95, pp. 717-728, (1998)
  • [7] Jacks T., Fazeli A., Schmitt E.M., Bronson R.T., Goodell M.A., Weinberg R.A., Effects of an Rb mutation in the mouse, Nature, 359, pp. 295-300, (1992)
  • [8] Kingston R.E., Narlikar G.J., ATP-dependent remodeling and acetylation as regulators of chromatin fluidity, Genes Dev., 13, pp. 2339-2352, (1999)
  • [9] Knudson Jr. A.G., Mutation and cancer: Statistical study of retinoblastoma, Proc. Natl Acad. Sci. USA, 68, pp. 820-823, (1971)
  • [10] Kress C., Vandormael-Pournin S., Baldacci P., Cohen-Tannoudji M., Babinet C., Nonpermissiveness for mouse embryonic stem (ES) cell derivation circumvented by a single backcross to 129/Sv strain: Establishment of ES cell lines bearing the Omd conditional lethal mutation, Afamm. Genome, 9, pp. 998-1001, (1998)