不同特征信息对TM尺度冬小麦面积测量精度影响研究

被引:19
作者
朱秀芳
贾斌
潘耀忠
顾晓鹤
韩立建
张宇泉
机构
[1] 北京师范大学环境演变与自然灾害教育部重点实验室北京师范大学资源学院
关键词
特征信息; 小麦面积测量; 最佳波段; 植被指数; 纹理; TM影像;
D O I
暂无
中图分类号
S512.1 [小麦]; S127 [遥感技术在农业上的应用];
学科分类号
0901 ; 082804 ;
摘要
充分挖掘遥感数据信息,改善作物识别环境,一直是农作物遥感监测的重要工作。以往研究表明最佳波段组合、纹理信息和植被指数信息可以在一定程度上提高分类精度,但这些手段是否一定可以提高作物识别的精度,不同分类器对不同特征信息组合的响应是否一致等都是值得探讨的问题,也是目前研究甚少的问题。为此,该文将平均值(Mean)、方差(Variance)、均一性(Homogeneity)、反差(Contrast)、相异性(Dissimilarity)、熵(Entropy)、角二阶矩(Angular SecondMoment)、灰度相关(Correlation)7种纹理信息以及比值植被指数(RVI)、土壤调整植被指数(SAVI)、重归一化植被指数(RDVI)、植被液态水含量指数(NDWI)、有效叶面积植被指数(SLAVI)5种植被指数信息分别加入到TM多光谱数据中,同时还进行了最佳波段选择,利用最小距离、最大似然和支持向量机3种方法进行分类提取小麦,研究了不同特征信息对小麦测量精度的影响。结果表明:该试验区内最佳波段5、4、3组合,纹理信息和植被指数信息的加入,对小麦面积测量精度的提高没有贡献;同一个特征信息组合对不同的分类器影响不同。在实际小麦面积测量的操作中,作业员不应该盲目的加入特征信息。选用何种信息不仅仅和研究区本身的性质有关,还和使用的分类器有关。
引用
收藏
页码:122 / 129+291 +291-292
页数:10
相关论文
共 20 条
[1]  
内蒙苦豆子ETM遥感信息提取的研究.[D].国红.南京林业大学.2003, 04
[2]   A contextual classification scheme based on MRF model with improved parameter estimation and multiscale fuzzy line process [J].
Tso, B ;
Olsen, RC .
REMOTE SENSING OF ENVIRONMENT, 2005, 97 (01) :127-136
[3]   Texture classification via conditional histograms [J].
Montiel, E ;
Aguado, AS ;
Nixon, MS .
PATTERN RECOGNITION LETTERS, 2005, 26 (11) :1740-1751
[4]  
Determining temporal windows for crop discrimination with remote sensing: a case study in south-eastern Australia.[J].Thomas G. Van Niel;Tim R. McVicar.Computers and Electronics in Agriculture.2004, 1
[5]   Study of urban spatial patterns from SPOT panchromatic imagery using textural analysis [J].
Zhang, Q ;
Wang, J ;
Gong, P ;
Shi, P .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2003, 24 (21) :4137-4160
[6]   A supervised contextual classifier based on a region-growth algorithm [J].
Lira, J ;
Maletti, G .
COMPUTERS & GEOSCIENCES, 2002, 28 (08) :951-959
[7]   A comparison of parametric classification procedures of remotely sensed data applied on different landscape units [J].
Hubert-Moy, L ;
Cotannec, A ;
Le Du, L ;
Chardin, A ;
Perez, P .
REMOTE SENSING OF ENVIRONMENT, 2001, 75 (02) :174-187
[8]  
遥感应用分析原理与方法.[M].赵英时等编著;.科学出版社.2003,
[9]   基于遥感影像的植被指数研究方法述评 [J].
罗亚 ;
徐建华 ;
岳文泽 .
生态科学, 2005, (01) :75-79
[10]   利用新型光谱指数改善冬小麦估产精度 [J].
刘良云 ;
王纪华 ;
黄文江 ;
赵春江 ;
张兵 ;
童庆禧 .
农业工程学报, 2004, (01) :172-175