基于扩展有限元法的粘聚裂纹模型

被引:46
作者
方修君
金峰
王进廷
机构
[1] 清华大学水利水电工程系
关键词
扩展有限元法; 粘聚裂纹模型; 准脆性; 数值模拟;
D O I
10.16511/j.cnki.qhdxxb.2007.03.010
中图分类号
O346.1 [断裂理论];
学科分类号
摘要
为了能利用通用程序模拟沿任意路径的裂纹扩展问题,利用一种预设虚节点法在通用有限元程序(ABAQUS)平台上实现扩展有限元法功能,推导了基于扩展有限元法的粘聚裂纹模型控制方程。利用上述模型对三点弯梁的开裂过程进行了模拟。计算结果与相应文献中给出的结果及ABAQUS粘聚单元法的模拟结果进行了对比,吻合良好。计算结果表明,扩展有限元法能有效地进行开裂过程的模拟,尤其是在开裂路径未知、难以预先设定网格边界作为裂纹面的情形。基于扩展有限元法的粘聚裂纹模型为准脆性材料的开裂过程模拟提供了一种有效途径。
引用
收藏
页码:344 / 347
页数:4
相关论文
共 10 条
[1]  
Babuˇska I,Melenk J M.The partition of unity method. International Journal f or Numerical Methods in Engineering . 1997
[2]  
Planas J,Elices M,Guinea G V,et al.Generalizations and specializations of cohesive crack models. Engineering Fracture Mechanics . 2003
[3]  
Wells G N,Sluys L J.A new method for modeling cohesive cracks using finite elements. International Journal f or Numerical Methods in Engineering . 2001
[4]  
Hillerborg A,Modéer M,Peterson P E.Analysis of crack propagation and crack growth in concrete by means of fracture mechanics and finite elements. Cement and Concrete Research . 1976
[5]  
Kohji Ohtsuka.Comparison of criteria on the direction of crack extension. Journal of Computational and Applied Mathematics . 2002
[6]  
Belytschko T,Black T.Elastic crack growth in finite elements with minimal remeshing. International Journal f or Numerical Methods in Engineering . 1999
[7]  
Melenk J M,Babuˇska I.The partition of unity finite element method:Basic theory and applications. Computer Methods . 1996
[8]  
Daux C,Moёs N,Dolbow J,et al.Arbitrary branched and intersecting cracks with the extended finite element method. International Journal f or Numerical Methods in Engineering . 2000
[9]  
Moёs N,Dolbow J,Belytschko T.A finite element method for crack growth without remeshing. International Journal f or Numerical Methods in Engineering . 1999
[10]  
Elices M,Guinea G V,Gómez J,et al.The cohesive zone model:Advantages,limitations and challenges. Engineering Fracture Mechanics . 2002