历史洪水对水文频率分析不确定性的影响

被引:5
作者
张立杰
机构
[1] 梧州学院数理系
关键词
历史洪水; 水文频率; 不确定性; Bayesian MCMC模型;
D O I
暂无
中图分类号
TV122.2 [];
学科分类号
081501 ;
摘要
针对水文频率分析过程中因模型选择和数据资料短缺引起分析结果不确定性问题,基于Bayesian MC-MC模型,将史料记载的定性洪水资料应用于水文频率分析中,并以西江流域梧州水文站为例进行洪水频率分析。结果表明,数据资料长度对水文频率分析结果的不确定性影响很大,且该模型应用于水文频率研究不仅可定量评估分析结果的不确定性,还可利用历史特大洪水信息有效降低分析结果的不确定性。
引用
收藏
页码:61 / 63
页数:3
相关论文
共 10 条
[1]  
Markov chain Monte Carlo (MCMC) sampling methods to determine optimal models, model resolution and model choice for earth science problems. Gallagher K,Charvin K,Nielsen S, et al. Marine and Petroleum Geology . 2009
[2]   基于贝叶斯理论的水文不确定性分析研究进展 [J].
梁忠民 ;
戴荣 ;
李彬权 .
水科学进展, 2010, 21 (02) :274-281
[3]   考虑参数和线型不确定性的水文设计值估计的贝叶斯方法 [J].
梁忠民 ;
李磊 ;
王军 ;
戴荣 .
天津大学学报, 2010, 43 (05) :379-384
[4]  
Bayesian MCMCApproach to Regional Flood Frequency Analyses In-volving Extraordinary Flood Events at Ungauged Sites. Gaume E,Gaál L,Viglione A,et al. Journal of Hydronautics . 2010
[5]  
nsRFA:Non-supervised Regional Frequen-cy Analysis. Viglione A. http://cran.r-project.org/web/packages/nsRFA . 2011
[6]  
A Bayesian Approach toAnalyzing Uncertainty among Flood FrequencyModels. Wood E F,Rodriguez-Iturbe I. Water Resources . 1975
[7]  
Bayesian MCMC approach to regional flood frequency analyses involving extraordinary flood events at ungauged sites[J] .  &nbspJournal of Hydrology . 2010 (1)
[8]  
Flood frequency analysis with systematic and historical or paleoflood data based on the two-parameter general extreme value models. F. Frances,J. D. Salas,D. C. Boes. Water Resources Research . 1994
[9]  
Comprehensive at -site Flood Frequency Analysis using Monte Carlo Bayesian Inference. Kuczera G. Water Resources . 1999
[10]  
Generalized likelihood uncertainty estimation (GLUE) using adaptive Markov chain Monte Carlo sampling. Blasone R S,Vrugt J A,Madsen H,et al. Advances in Water Resources . 2008