基于ICPSO-PID风电机组桨距控制分析

被引:3
作者
许昌 [1 ]
田蔷蔷 [1 ,2 ]
Shen Wenzhong [3 ]
郑源 [1 ]
刘德有 [1 ]
张明 [4 ]
机构
[1] 河海大学能源与电气工程学院
[2] 上海勘测设计研究院
[3] 丹麦科技大学风能系
[4] 南京曼奈柯斯电器有限公司
基金
中央高校基本科研业务费专项资金资助; 教育部留学回国人员科研启动基金;
关键词
风力发电机组; 比例、积分、微分控制; 粒子群优化; 变桨距控制; 电液;
D O I
暂无
中图分类号
TM315 [风力发电机];
学科分类号
080801 ;
摘要
针对传统的一阶变桨距机构简化模型难以描述真实的变距执行系统动态特性,建立了完整的电液变桨距风力发电机组高阶数学模型;根据风电机组额定风速以上恒功率控制目标并考虑变桨机构具有惯性和延迟特性,设计了基于功率和风速前馈的变桨控制器;针对额定风速以上变桨控制器参数整定难的问题,提出了一种基于改进协同粒子群优化算法(ICPSO)与比例、积分、微分控制器(PID)相结合的ICPSO-PID控制算法,并将其应用于桨距角PID控制器的参数整定.研究结果表明:提出的优化算法能够快速整定桨距角控制器的参数,风速前馈控制器能够提高变桨系统的动态性,功率控制环节能够实现额定风速以上风电机组恒功率控制.与传统PID控制器的控制效果相比,提出的控制方法具有超调量小、调节时间短和鲁棒性好等优良的控制品质.文中研究方法可应用到实际的电液变桨距风力发电机组控制系统中.
引用
收藏
页码:973 / 979
页数:7
相关论文
共 18 条
[1]  
Torque and power limitations of variable speed wind turbines using pitch control and generator power control. N.Horiuchi,T. Kawahito. Power Engineering Society Summer Meeting IEEE . 2001
[2]  
Particle swarm optimization with dynamic adaptive inertia weight. Shen Xianjun,Chi Zhifeng,Kai Jin,et al. Proceedings of the 2010 IEEE International conference on Challenges in Environmental Science and Computer Engineering . 2010
[3]  
The Selection of Acceleration Factors for Improving Stability of Particle Swarm Optimization. Wei Zhang,Hua Li,Zhaoxia Zhang et al. 2008 Fourth International Conference on Natural Computation (ICNC‘08) . 2008
[4]  
Gain-scheduled linear quadratic control of wind turbines operating at high wind speed. Ostergaard K Z,Brath P,Stoustrup J. Proceedings of the2007IEEE Multi-conference on Systems and Control . 2007
[5]  
Hybrid particle swarm optimizer with breeding and subpopulations. Lovbjerg M,Rasmussen TK,Krink T. Proceedings of the 3rd Genetic and Evolutionary Computation Conference 2001 (GECC0 2001) . 2001
[6]  
New Chaotic PSO-Based Neural Network Predictive Control for Nonlinear Process. Ying Song,Zengqiang Chen,Zhuzhi Yuan. IEEE Transactions on Neural Networks . 2007
[7]  
Particle Swarm Optimization. Ennedy J,Eberhart R C. Proceedings of IEEE International Conference on Neural Networks . 1995
[8]  
Output power leveling of wind turbine generator for all operating regions by pitch angle control. Senjyu, Tomonobu,Sakamoto, Ryosei,Urasaki, Naomitsu,Funabashi, Toshihisa,Fujita, Hideki,Sekine, Hideomi. IEEE Transactions on Energy Conversion . 2006
[9]  
Disturbance rejection by dual pitch control and self-tuning regulator for wind turbine generator parametric uncertainty compensation. Muhando, E.B.,Senjyu, T.,Yona, A.,Kinjo, H.,Funabashi, T. IET Control Theory and Applications . 2007
[10]  
Augmented LQG controller for enhancement of online dynamic performance for WTG system[J] . Endusa Billy Muhando,Tomonobu Senjyu,Hiroshi Kinjo,Toshihisa Funabashi. &nbspRenewable Energy . 2007 (8)